PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Antimicrobial packaging with natural compunds - a review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Aktywne opakowania z naturalnymi związkami antybakteryjnymi
Języki publikacji
EN
Abstrakty
EN
Background: Packaging problems are an integral part of logistics and the implementation of packaging significantly affects the effectiveness of logistics processes, as a factor which increases the safety and the quality of products being transported. Active packaging is an area of technology needed to meet the requirements of the contemporary consumer. Active packaging creates additional opportunities in systems for packing goods, as well as offering a solution in which the packaging, the product and surroundings interact. Furthermore, active packaging allows packaging to interact with food and the environment and play a dynamic role in food preservation. The main role of antimicrobial packaging is to inhibit the growth of microorganisms that reduce the quality of the packaged product. Methods: The application of natural antimicrobial agents appears to be safe for food products. Also, these compounds have potential applications as a natural preservative in the food packaging industry. This study presents some antibacterial agents, namely chitosan, nisin and pectins. Results and conclusion: Natural substances used in active packaging can eliminate the danger of chemical substances migrating to food.
PL
Wstęp: Problematyka opakowań jest elementem logistyki, zaś zastosowane opakowania istotnie wpływają na efektywność procesów logistycznych, jako czynnik zapewniający bezpieczeństwo i zwiększający jakość transportowanych wyrobów. Opakowania aktywne są obszarem technologii wychodzącym na przeciw wymaganiom stawianym przez współczesnego konsumenta. Opakowania aktywne stwarzają nowe możliwości w zakresie systemów pakowania towarów oraz stanowią rozwiązanie, w którym to opakowanie, produkt oraz otoczenie wzajemnie na siebie oddziałują. Poza tym opakowania aktywne w wyniku zachodzących oddziaływań z wewnętrzną atmosferą i produktem prowadzą do przedłużenia jego trwałości. Główną rolą opakowania przeciwbakteryjnego jest hamowania wzrostu drobnoustrojów, które obniżają jakość produktu. Metody: Stosowanie naturalnych środków przeciwbakteryjnych wydaje się być bezpieczne dla produktów spożywczych. Ten typ związków ma potencjalne zastosowanie jako naturalne środki konserwujące w przemyśle spożywczym. W niniejszej pracy przedstawiono niektóre ze stosowanych środków przeciwbakteryjnych, min. chitozan, nizyny i pektyny. Wyniki i podsumowanie: Naturalne substancje przeciwbakteryjne stosowane w opakowaniach aktywnych eliminują niebezpieczeństwo konsumentów w zakresie migracji chemicznych substancji do żywności.
Czasopismo
Rocznik
Strony
193--202
Opis fizyczny
Bibliogr. 76 poz.
Twórcy
autor
  • Department of Industrial Products Quality and Ecology, Faculty of Commodity Science, Poznan University of Economics, al. Niepodległości 10, 61-875 Poznan, Poland
Bibliografia
  • 1. Aider M., 2010. Chitosan application for active bio-based films production and potential in the food industry: Review, Food Science and Technology, 43, 837-842.
  • 2. Ali S.W., Rajendran S., Joshi M., 2011. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83, 438-446.
  • 3. Alves V.D., Castelló R., Ferreira A.R., Nuno Costa N., Fonseca I.M., Coelhoso I.M., 2011. Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 1, 240-245.
  • 4. Brewer R., Adams M.R., Park S.F. 2002.Enhanced inactivation of Listeria monocytogenes by nisin in the presence of ethanol. Lett. Appl. Microbiol., 34, 18-21.
  • 5. Brody A., Strupinsky E.R., Kline L.R. 2001. Odor removers. In: Brody A., Strupinsky E.R., Kline L.R., editors. Active packaging for food applications. Lancaster, Pa.: Technomic Publishing Company, Inc.107-17.
  • 6. Byun Y., Ward A., Whiteside S., 2012. Formation and characterization of shellachydroxypropyl methylcellulose composite films. Food Hydrocolloids, 27, 364-370.
  • 7. Cao-Hoang L., Chaine A., Grégoire L., Waché Y. 2010. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiology, 27, 940-944.
  • 8. Chen H.B., Chiou B.S., Wang Y.Z., Schiraldi D. A. 2013. Biodegradable pectin/clay aerogels. ACS Applied Materials & Interfaces, 5[5], 1715-1721.
  • 9. Chollet E., Sebti I., Martial-Gros A., Degraeve P., 2008. Nisin preliminary study as a potential preservative for sliced ripened cheese: NaCl, fat and enzymes influence on nisin concentration and its antimicrobial activity. Food Control, 19, 982-989.
  • 10. Cipriani T.R., Gracher A.H.R., de Souza L.M., Fonseca R.J.C., Belmiro C.L.R., Gorin P.A.J., 2009. Influence of molecular weight of chemically sulfated citrus pectin fractions on their antithrombotic and bleeding effects. Thrombosis and Haemostasis, 101[5], 860-866.
  • 11. Coma V., Sebti I., Pardon P., Deschamps A., Pichavant F.H. 2001. Antimicrobial edile packaging based on cellulosic ethers, fatty acids and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J Food Prot, 64, 470-475.
  • 12. Coma V., 2008. Bioactive packaging technologies for extended shelf life of meatbased products. Meat Science, 78, 90-103.
  • 13. Cruz-Romero M.C., Murphy T., Morris M., Cummins E., Kerry J.P. 2013. Antimicrobialactivity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications, Food Control, 34, 393-397.
  • 14. Dainelli D., Gontard N., Spyropoulos D., Zondervan-van den Beuken E., Tobback P. 2008. Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science& Technology, 19, 99-108.
  • 15. Day B.P.F., 1989, Extension of shelf-life of chilled foods. Eur Food Drink Rev. 4, 47-56.
  • 16. Delves-Broughton J., Blackburn P., Evans R.J., Hugenholtz J. 1996. Applications of the bacteriocin nisin. Antonie van Leeuwenhoek, 69, 193-202.
  • 17. Duran M., Seckin Aday M., Zorba N.N.D., Temizkan R., Büyükcan M.B., Caner C., 2016. Potential of antimicrobial active packaging'containing natamycin, nisin, pomegranate andgrape seed extract in chitosan coating' to extendshelf life of fresh strawberry. Food and Bioproducts Processing, 98 (2016) 354-363.
  • 18. Economou T., Pournis N., Ntzimani A., Savvaidis I.N. 2009. Nisin-EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life. Food Chemistry, 114, 1470-1476.
  • 19. Elsabee M.Z., Abdou E.S., Nagy K.S.A. 2008. Eweis M. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydrate Polymers, 71[2], 187-195.
  • 20. Entsar I.R., Badawy M.E.T., Stevens C.V., Smagghe G., Walter S., 2003. Chitosan as antimicrobial agent: application and mode of action. Biomacromolecules, 4, 1457-1465.
  • 21. Ercolini D., Ferrocino I., La Storia A., Mauriello G., Gigli S., Masi P., Francesco Villani F. 2010. Development of spoilage microbiota in beef stored in nisin activated packaging Food Microbiology, 27,137-143.
  • 22. Farris S., Schaich K.M., Liu L.S., Cooke P.H., Piergiovanni L., Yam K.L., 2011. Gelatine pectin composite films from polyioncomplex hydrogels. Food Hydrocolloid, 25, 61-70.
  • 23. Floros J.D., Dock L.L., Han J.H., 1997. Active packaging technologies and applications. Food Cosmetics and Drug Packaging, [S.l.], 17, 10.
  • 24. Franklin N.B., Cooksey K.D., Getty K.J.K., 2004. Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J. Food Prot. 67, 480-485.
  • 25. Gadang V.P., Hettiarachchy N.S., Johnson M.G., Owens C., 2008. Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. J. Food Sci., 73, 389-394.
  • 26. Gopi D., Shinyjoy E., Kavitha L., 2014. Synthesis and spectral characterization of silver/magnesium co-substituted hydroxylapatite for biomedical applications, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 589-597.
  • 27. Gontard N., 2007. Antimicrobial paper based packaging. In: International antimicrob ial in plastic and textile applications. Intertech PIRA conference. 27-26 June 2007, Prague, Czech Republic.
  • 28. Gorrasi G., Bugatti V., Vittoria V., 2012. Pectins filled with LDH-antimicrobial molecules: Preparation, characterizationand physical properties. Carbohydrate Polymers, 89, 132-137.
  • 29. Han J.H., 2000, Antimicrobial Food Packaging. Food Technology, 54[3], 56-65.
  • 30. Han J.H., 2003. Antimicrobial food packaging In: R. Ahvenainen [Ed.] Novel food packaging techniques: Woodhead Publishing Limited and CRC Press LLC, 70-72.
  • 31. Han J.H., 2005. Antimicrobial packaging systems. In: J.H. Han [Ed.], Innovations in food packaging: Academic Press Inc. 80-201.
  • 32. Ko S., Janes M.E., Hettiarachchy N.S., Johnson, M.G., 2001. Physical and chemical of edible films containing nisin and their action against Listeria monocytogenes. Journal of Food Science, 66[7], 1006-1011.
  • 33. Kristo E., Koutsoumanis K.P., Biliaderis C.G., 2008. Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria onocytogenes. Food Hydrocolloids, 22[3], 373-386.
  • 34. de Kruijf N., van Beest M., Rijk R., Sipilainenmalm T., Paseiro Losada P., De Meulenaer B. 2002. Active and intelligent packaging: applications and regulatory aspects. Food Additives & Contaminants, 19, 144-162.
  • 35. Jin T., Liu L., Sommers C.H., Boyd G., Zhang H., 2009. Radiation sensitization and postirradiation proliferation of Listeria monocytogenes on ready-to-eat deli meat in the presence of pectin nisin films. Journal of Food Protection. 72[3], 644-649.
  • 36. Qi L., Xu, Z., Jiang X., Hu C., Zou X., 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339[16], 2693-2700.
  • 37. Quintavall S., Vicini L., 2002, Antimicrobial food packaging in meat industry. Meat Science, 62, 373-380.
  • 38. Lehr C.M., Bouwstra J.A., Schacht E.H., Jungiger, H.E., 1992. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. International Journal of Pharmaceutics, 78[1-3], 43-48.
  • 39. Lopez-Pedemonte T.J., Roig-Sagues A.X., Trujillo A.J., Capellas M., Guamis B., 2003. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. J. Dairy Sci., 86, 3075-3081.
  • 40. Luchansky J.B., Call J.E., Hristova B., Rumery L., Yoder, L., Oser A. 2005. Viability of Listeria monocytogenes on commercially-prepared hams surface treated with acidic calcium sulfate and lauric arginate and stored at 4°C. Meat Science, 71, 92-99.
  • 41. May C.D., 1990. Industrial pectins: Sources, production, and applications. Carbohydrate Polymers, 12[1], 79-99.
  • 42. Mi F.L., Yu S.H., Peng C.K., Sung H.W., Shyu S.S., Liang H.F. Huang M.F., Wang C., 2006. Synthesis and characterization of a novel glycoconjugated macromolecule. Polymer, 47, 4348-4358.
  • 43. Ming X., Weber G.H., Ayres J.W., Sandine W.E., 1997. Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 62, 413-415.
  • 44. Mishra R.K., Banthia A.K., Majeed A.B.A. 2012. Pectin based formulations for applications: a review. Asian Journal of Pharmaceutical and Clinical Research, 5[4], 1-7.
  • 45. Mulders J.W., Boerrigter I.J., Rollema H.S., Siezen R.J., de Vos W.M., 1991, Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J. Biochem., Nov 1, 201, 3, 581-584.
  • 46. Natrajan N., Sheldon B.W. 2000. Inhibition of Salmonella on poultry skin using proteinand polysaccharide-based films containing a nisin formulation. J. Food Prot., 63, 1268-1272.
  • 47. Neetoo H., Ye M., Chen H., Joerger R.D., Hicks D., Hoover D.G., 2008. Use of nisin coated plastic films to control Listeria monocytogenes on vacuum packaged cold smoked salmon. Int. J. Food Microbiol., 22, 8-15.
  • 48. Nguyen V.T., Gidley M.J., Dykes G., 2008. A.Potential of nisin-containing bacterials cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 25 [3], 471-478.
  • 49. Nilsson L., Chen Y., Chikindas M.L., Huss H., Gram L., Montville T.J., 2000. Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Applied Environmental Microbiology, 66, 769-774.
  • 50. Park S.Y., Jun S.T., Marsh K.S., 2001. Physical properties of PVOH/chitosan blended films cast from different solvents. Food Hydrocolloids, 15[4-6], 499-502.
  • 51. Pereda M., Ponce A.G., Marcovich N.E., Ruseckaite R.A., Martucci J.F.C., 2011. Hitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25, 1372-1381.
  • 52. Ravishankar S., Jaroni D., Zhu L., Olsen C., McHugh T., Friedman M., 2012. Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde. Journal of Food Science, 77[7], 377-382.
  • 53. Rabea E.I., Badawy M.E., Stevens C.V., Smagghe G., Steurbaut W. 2013. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4, 1457-1465.
  • 54. Rhim J.W., Hong S.I., Park H.M., Ng P.K.W., 2006: Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54, 5814-5822.
  • 55. Robertson G.L. [ed.], 2006. Food Packaging - Principles and Practice. Second edition, CRC Press, Boca Raton, FL, USA.
  • 56. Scannell A.G.M., Hill C., Ross R.P., Marx S., Hartmeier W., Arendt E.K., 2000. Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin [R]. Int. J. Food Microbiol. 2000, 60, 241-249.
  • 57. Souto-Maior J.F.A., Reis A.V., Pedreiro L.N., Cavalcanti O.A., 2010. Phosphated crosslinked pectin as a potential excipient for specific drug delivery: Preparation and physicochemical characterization. Polymer International, 59[1], 127-135.
  • 58. Souza M.P., Cerqueira M.A., Souza B.W.S., Teixeira J.A., Porto A.L.F., Vicente A.A. 2010. Polysaccharide from Anacardium occidentale L. tree gum [Policaju] as a coating for Tommy Atkins mangoes. Chemical Papers, 64[4], 475-481.
  • 59. Sharma R., Ahuja, M., 2011. Thiolated pectin: Synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydrate Polymers, 2011, 85[3], 658-663.
  • 60. Siragusa G.R., Cutter C.N., Willett J.L., 1999. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiol. 16, 229-235.
  • 61. Stasse-Wolthuis M., Albers H.F., van Jeveren J.G., Wil de Jong J., Hautvast J.G., 1980. Hermus R.J. Influence of dietary fiber from vegetables and fruits, bran or citrus pectin on serum lipids, fecal lipids, and colonic function. American Journal of Clinical Nutrition, 33, 1745-1756.
  • 62. Tahiri I., Desbiens M., Benech R., Kheadr E., Lacroix C., Thibault S., 2004. Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. International Journal of Food Microbiology, 97[2], 123-136.
  • 63. Tahiri I., Desbiens M., Lacroix C., Kheadr E., Fliss I., 2009. Growth of Carnobacterium divergens M35 and production of Divergicin M35 in snow crab by-product, a natural-grade medium. LWT - Food Science and Technology, 42[2], 624-632.
  • 64. Teerakarn A., Hirt D.E., Acton J.C., Rieck J.R., Dawson P.L. 2002. Nisin Diffusion in rotein Films: Effects of Film Type and Temperature, Journal of Food Science. 67, 8, 3019-3025.
  • 65. Thibault J.F., Ralet M.C. 2001. Pectins, their origin, structure and functions. In: B.V. McCleary, L. Prosky [Eds.], 2Advanced dietary fibre technology [pp. 369-378]. Oxford, UK: Blackwell Science.
  • 66. Tripathi S., Mehrotra G.K., Dutta P.K., Preparation and physicochemical evaluation of chitosan/poly[vinyl alcohol]/pectin ternary film for food-packaging applications. Carbohydrate Polymers, 79[3], 711-716.
  • 67. Wang Y., Zhang Q., Zhang C., Li P., 2012. Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chemistry, 2012, 132, 419-427.
  • 68. Wang H., Zhang R., Zhang H., Jiang S., Liu H., Sun M., Jiang S. 2015. Kinetics and functional effectiveness of nisin loaded antimicrobialpackaging film based on chitosan/poly(vinyl alcohol). Carbohydrate Polymers 127 [2015] 64-71.
  • 69. Wilson C., 2007. Frontiers of intelligent and active packaging for fruits and vegetables. Boca Raton, Fa.: CRC Press. 360.
  • 70. Wu T., Zivanovic S., Draughon F.A., Conway W.S., Sams C.E., 2005. Physicochemical properties and bioactivity of fungal chitin and chitosan. Journal of Agricultural and Food Chemistry, 53, 3888-3894.
  • 71. Vargas M., Albors A., Chiralt A., Gonzalez-Martenez C., 2006. Quality of cold-stored bstrawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biology and Technology, 41, 164-171.
  • 72. Voragen A.G.J., Coenen G.J., Verhoef R.P., Schols H.A., 2009. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263-275.
  • 73. Yu S.H., Hsieh H.Y., Pang J.Ch., Tang D.W., Shih C.M., Tsai M.L., Tsai Y.C., Mi F.L., 2013. Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids, 32, 9-19.
  • 74. Ziani K., Fernandez-Pan I., Royo M., Mate J.I., 2009. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocolloids, 23, 2309-2314.
  • 75. Zouambia Y., Moulai-Mostefa N., Krea M., 2009. Structural characterization and surface activity of hydrophobically functionalized extracted pectins, Carbohydrate Polymers, 78, 841-846.
  • 76. Zhou Y., Zhao Y., Wang L., Xu L., Zhai M., Wei S.2012. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel Radiation Physics and Chemistry, 81, 553-56.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54fe559e-7bd7-40e2-a743-5b0e4dc7acd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.