Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Kyrgyzstan is an earthquake-prone country at the border of the Pamir Thrust, north of the active shortening structure of the Pamir Mountains and the intra-continental mountain belt of the Tian Shan further north. The region has had several M7+damaging earthquakes, which have killed thousands of people. In the West, the country is cut through by the 700-km long NW–SE Talas-Fergana active strike-slip fault system, where no major earthquakes have been observed in the last 250 years even though paleoseismic studies show the potential to produce M7.0+events. This study is the second part of a project to estimate the potential damage and losses on residential buildings as well as critical infrastructures in the case of a large earthquake in the two mining towns of Kadamjay and Aidarken in the SW of Kyrgyzstan. Microtremors were recorded on 82 sites and analyzed with the Horizontal-to-Vertical Spectral Ratio (HVSR) method. For each site, we estimate the average frequency of the clearest peak and its amplitude in the HVSR spectra to produce microzonation maps, in terms of response frequency. We further used these data for the calculation of ground shaking using a set of six seismic scenarios based on the known faults around the two towns. This approach has proved to be efficient in a country where the resources and available data are limited and when the time of investigation is short. The Kadamjay and Aidarken cities have been divided into different zones with specific predominant resonance frequency ranges, which information is useful for risk analysis, mitigation and buildings retrofit. In Kadamjay, three regions dominate which are related to the history of alluvial deposition in a series of terraces. The more elevated terrace could be the place of seismic site amplification. Aidarkan is much more homogenous in terms of thickness and type of alluvial deposits.
Wydawca
Czasopismo
Rocznik
Tom
Strony
293--307
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- ICES - International Centre for Earth Simulation Foundation, Geneva, Switzerland
autor
- ICES - International Centre for Earth Simulation Foundation, Geneva, Switzerland
Bibliografia
- 1. Abdrakhmatov K, Aldazhanov S, Hager B, Hamburger M et al (1996) Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature 384:450–453
- 2. Abdrakhmatov K, Havenith H-B, Delvaux D, Jongmans D, Trefois P (2003) Probabilistic PGA and Arias intensity maps of Kyrgyzstan (Central Asia). J Seismolog 7:203–220
- 3. Abdrakhmatov K (2009) Establishment of the Central Asia Seismic Risk Initiative (CASRI). Technical Report on the Work Performed from: 02.01.2006 to 04.30.2009, ISTC Project No. KR 1176, Institute of Seismology, National Academia of Sciences, Kyrgyz Republic.
- 4. Allen MB, Windley BF, Chi Z (1992) Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics 220:89–115
- 5. Bard P-Y, Catello A, Aguacil G et al (2008) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Bull Earthq Eng 6(4):1–2
- 6. Bindi D, Abdrakhmatov K, Parolai S, Mucciarelli M, Gruenthal G, Ischuk A, Mikhailova N, Zschau J (2012) Seismic hazard assessment in Central Asia: outcomes from a site approach. Soil Dyn Earthq Eng 37:84–91
- 7. Coddington J, Burgette RJ (2018) Structural evolution of basins in the Tien Shan: the example of Jumgal basin, Kyrgyzstan. Presented at American Geophysical Union Fall Meeting, Washington DC, USA 2018:T51F-0237
- 8. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80
- 9. EN 1998–1 (2004). Eurocode 8: Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC. https://regbar.com/wp-content/uploads/2019/09/Eurocode-8-1-Earthquakes-general.pdf.
- 10. Gruenthal G (1998) European Macroseismic Scale; Conseil de l'Europe: Luxembourg, 1998.
- 11. Havenith H-B, Strom A, Torgoev I, Torgoev A, Lamair L, IschukA AK (2015) Tien Shan geohazards database: earthquakes and landslides. Geomorphology 249:16–31
- 12. Ischuk A, Bjerrum LW, Kamchybekov M, Abdrakhmatov K, Lindholm C (2018) Probabilistic seismic hazard assessment for the area of Kyrgyzstan, Tajikistan, and Eastern Uzbekistan. Central Asia Bull Seis Soc Am 108(1):130–144. https://doi.org/10.1785/0120160330
- 13. Kamchybekov MP, Egemberdieva KA, Charimov TA, Kamchybekov YP (2013) Macroseismic survey of the Kansk earthquake. Bulletin of the Institute of Seismology of the National Academy of Sciences of the Kyrgyz Republic, No 1:40–49
- 14. Konno K, Ohmachi T (2000) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88(1):228–241
- 15. Lunedei E, Malischewsky PA (2015) Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations. In: Ansal A. (eds) Perspectives on European Earthquake Engineering and Seismology. Geotechnical, Geological and Earthquake Engineering, 39. Springer, Cham. https://doi.org/10.1007/978-3-319-16964-4_15
- 16. Mohadjer S, Ehlers TA, Bendick R, Stübner K, Strube T (2016) A Quaternary fault database for central Asia. Nat Hazards Earth Syst Sci 16:529–542. https://doi.org/10.5194/nhess-16-529-2016
- 17. Molnar P, Tapponier P (1975) Cenozoic Tectonics of Asia: effects of a continental collision. Science 189:419–426
- 18. Molnar S, Cassidy JF, Castellaro S et al (2018) Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) analysis for site characterization: state of the art. Surv Geophys 39:613–631. https://doi.org/10.1007/s10712-018-9464-4
- 19. Rosset P, Tolis S, Wyss M (2020) The use of QLARM to estimate seismic risk in Kirghizstan at the regional and city scales. Acta Geophys 68:979–991. https://doi.org/10.1007/s11600-020-00449-6
- 20. Rosset P, Tolis S, Speiser M, Wyss M (2021) QLARM, un outil au service de la gestion du risque sismique et des crises; Étude de cas au Kirghizstan. In: Leone F, Vinet F (eds) Presse Universitaire de Montpellier, editors: , Géorisque 9:115–126 (In French)
- 21. Thompson SC, Weldon RJ, Rubin CM, Abdrakhmatov K, Molnar P, Berger GW (2002) Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan. Central Asia J Geophys Res 107(B9):2203. https://doi.org/10.1029/2001JB000596
- 22. Torgoev I, Aleshin YG (2009) Geoecology and wastes of the mining complex of Kyrgyzstan. Bishkek: ILIM, 2009 (in Russian).
- 23. Trendafiloski G, Wyss M, Rosset P, Marmureanu G (2009) Constructing city models to estimate losses due to earthquakes worldwide: application to Bucharest Romania. Earthq Spectra 25(3):665–685
- 24. Trendafiloski G; Wyss M and Rosset P (2011). Loss estimation module in the second generation software QLARM. In: Spence R, So E, Scawthorn C (eds) Human casualties in earthquakes: progress in modeling and mitigation. Springer, Cham, pp 381–391.
- 25. Wathelet M, Chatelain J-L, Cornou C, Di Giulio G, Guillier B, Ohrnberger M, Savvaidis A (2020) Geopsy: a user-friendly open-source tool set for ambient vibration processing. Seismol Res Lett 91(3):1878–1889
- 26. Wyss M, Elashvili M, Jorjiashvili N, Javakhishvili Z (2011) Uncertainties in teleseismic earthquake locations: implications for real-time loss estimates. Bull Seismol Soc Am 101:1152–1161
- 27. Wyss M, Speiser M, Tolis S (2022) Earthquake fatalities and potency. Nat Hazards (in Press).
- 28. Zubovich AV, Wang X, Scherba YG, Schelochkov GG et al (2010). GPS velocity field for the Tien Shan and surrounding regions. Tectonics 29(6), TC6014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54fe30d8-dcfb-4601-ab33-f390127c62fc