PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boosting resonant switched-capacitor voltage tripler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This elaboration presents the concept of a unidirectional DC–DC switchedcapacitor converter operating as a voltage tripler. The system consists of two resonant cells with switched capacitors and chokes. This proposed converter topology achieves low voltages on semiconductor switches (diodes and transistors) compared to the classic SC series-parallel converter or the boost topology. The output voltage on the capacitors is reduced in the proposed converter because it is divided into two series-connected capacitors with asymmetric distribution. The presented results describe the analytical description of the system operation and the analytical equation for semiconductor currents. A simulation and experimental results have been performed. The system efficiency and three voltage gain values were measured in the experimental setup. The efficiency measured was also compared with the analytical determination curve for loss analysis and further converter optimization.
Rocznik
Strony
373--389
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • AGH University of Science and Technology Poland
  • AGH University of Science and Technology Poland
  • AGH University of Science and Technology Poland
Bibliografia
  • [1] Ioinovici A., Switched-capacitor power electronics circuits, IEEE Circuits Syst. Mag., vol. 1, no. 3, pp. 37–42 (2001), DOI: 10.1109/7384.963467.
  • [2] Forouzesh M., Siwakoti Y.P., Gorji S.A., Blaabjerg F., Lehman B., Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications, IEEE Trans. Power Electron., vol. 32, pp. 9143–9178 (2017), DOI: 10.1109/TPEL.2017.2652318.
  • [3] Waradzyn Z., Stala R., Mondzik A., Skała A., Penczek A., GaN-Based DC–DC Resonant Boost Converter with Very High Efficiency and Voltage Gain Control, Energies, vol. 13, no. 6403 (2020), DOI: 10.3390/en13236403.
  • [4] Chojowski M., Stala R., Piłat A., Skowron M., Folmer S., The Design Concept of Low Cost and Volume Switched-capacitor DC–DC Resonant Converter, 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, pp. 200–206 (2021), DOI: 10.1109/ PEMC48073.2021.9432547.
  • [5] Li S., Xie W., Smedley K.M., A Family of an Automatic Interleaved Dickson Switched-Capacitor Converter and Its ZVS Resonant Configuration, IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 255–264 (2019), DOI: 10.1109/TIE.2018.2829682.
  • [6] Sun R.Y., Webb S., Liu Y.-F., Flying capacitor design considerations for a 48-to-12 V, 35 a split-phase Dickson SC converter, Chinese Journal of Electrical Engineering, vol. 6, no. 4, pp. 28–41 (2020), DOI: 10.23919/CJEE.2020.000028.
  • [7] Alzahrani A., Shamsi P., Ferdowsi M., Analysis and design of bipolar Dickson DC–DC converter, 2017 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–6 (2017), DOI: 10.1109/PECI.2017.7935733.
  • [8] Alzahrani A., Shamsi P., Ferdowsi M., Boost converter with bipolar Dickson voltage multiplier cells, 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 228–233 (2017), DOI: 10.1109/ICRERA.2017.8191271.
  • [9] Cao Y., Samavatian V., Kaskani K., Eshraghi H., A Novel Nonisolated Ultra-High-Voltage-Gain DC–DC Converter with Low Voltage Stress, IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 2809–2819 (2017), DOI: 10.1109/TIE.2016.2632681.
  • [10] Stala R. et al., High-Gain Switched-Capacitor DC–DC Converter with Low Count of Switches and Low Voltage Stress of Switches, IEEE Access, vol. 9, pp. 114267–114281 (2021), DOI: 10.1109/AC-CESS.2021.3104399.
  • [11] Law K.K., Cheng K.W.E., Yeung Y.P.B., Design and analysis of switched-capacitor-based step-up resonant converters, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 5, pp. 943–948 (2005), DOI: 10.1109/TCSI.2004.840482.
  • [12] Li Z. et al., Analysis and Design of Half-bridge Dickson Resonant Switched-Capacitor Converters with “Indirect” Resonant Core, IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5063–5073 (2021), DOI: 10.1109/TIA.2021.3091552.
  • [13] Emadi A., Williamson S.S., Khaligh A., Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems, IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 567–577 (2006), DOI: 10.1109/TPEL.2006.872378.
  • [14] Wang J., Automotive Headlamp HID Ballast Reference Design Using the dsPIC®DSC Device, Microchip Technology Inc., AN1372 (2011–2012).
  • [15] Lee M., Lai J.-S., Spread-Spectrum Frequency Modulation with Adaptive Three-Level Current Scheme to Improve EMI and Efficiency of Three-Level Boost DCM PFC, IEEE Transactions on Power Electronics, vol. 36, no. 3, pp. 2476–2480 (2021), DOI: 10.1109/TPEL.2020.3016238.
  • [16] Fukuda K., Koizumi H., Three-level buck-boost dc–dc converter with voltage-lift-type switched-inductor, IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 1368–1373 (2013), DOI: 10.1109/IECON.2013.6699332.
  • [17] Emadi A. Williamson S.S., Khaligh A., Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems, in IEEE Transactions on Power Electronics, vol. 1, no. 3, pp. 567–577 (2006), DOI: 10.1109/TPEL.2006.872378.
  • [18] Kothapalli K.R., Ramteke M.R.R., Suryawanshi H.M., Reddi N.K., Kalahasthi R.B., Soft-Switched Ultra High Gain DC DC Converter with Voltage Multiplier Cell for DC Microgrid, in IEEE Transactions on Industrial Electronics (2020), DOI: 10.1109/TIE.2020.3031453.
  • [19] Choi W.-Y., Yang M.-K., Soft-Switching Bidirectional Three-Level DC–DC Converter with Simple Auxiliary Circuit, Electronics, vol. 8, no. 983 (2019), DOI: 10.3390/electronics8090983.
  • [20] Zulauf G., Park S., Liang W., Surakitbovorn K.N., Rivas-Davila J., COSS Losses in 600 V GaN Power Semiconductors in Soft-Switched, High- and Very-High-Frequency Power Converters, IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10748–10763 (2018), DOI: 10.1109/TPEL.2018.2800533.
  • [21] Tektronix, Inc., TCP0030A Datasheet 30 A AC/DC Current Probe, online: https://www.tek.com/datasheet/30-ac-dc-current-probe, accessed May 2022.
  • [22] Tektronix, Inc., MDO3000 Mixed Domain Oscilloscope, online: https://www.tek.com/oscilloscope/mdo3000-mixed-domain-oscilloscope, accessed May 2022.
  • [23] Tektronix, Inc., TPP1000 Passive Voltage Probes, online: https://www.tek.com/datasheet/passive-voltage-probes, accessed May 2022.
  • [24] YOKOGAWA, WT500 Power Analyzer, WT500 Power Analyzer datasheet, online: https://tmi.yokogawa.com/solutions/products/power-analyzers, accessed May 2022.
  • [25] Grandi G., Kazimierczuk M.K., Massarini A., Reggiani U., Sancineto G., Model of laminated iron-coreinductors for high frequencies, IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 1839–1845 (2004), DOI: 10.1109/TMAG.2004.830508.
  • [26] CREE, Silicon Carbide Power MOSFET, C3M0060065D datasheet, online: https://assets.wolfspeed.com/uploads/2020/12/C3M0060065D.pdf, accessed May 2022.
  • [27] VISHAY, Dual High Voltage Trench MOS Barrier Schottky Rectifier, VB60170G-E3, online: https://www.vishay.com/docs/89950/vb60170g.pdf, accessed May 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54f8d720-1750-451a-9675-d07ca2d8b57a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.