PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of the probability of elastomers degradation in natural environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A wide range of elastomers allows to manufacture products that meet high demands of consumers. They are prepared from a mixture of several rubbers, rubber chemicals, additives and reinforcing materials (fibres), which allows you to obtain the desired properties of the products. The other components of rubber compounds are fillers, carbon blacks and plasticizers. Rubber chemicals supplement the mixture in small quantities of related products, which affect vulcanization and regulate their properties, so they have an irreplaceable role in the preparation of rubber products. The aim of experimental part is to assess the properties of the degradation environment on samples of rubber composites to change their properties. The result of the performed mechanical tests to evaluate and compare the obtained values of mechanical properties of rubber compounds and to predict the possibility of biological degradation of the tested material.
Rocznik
Strony
279--282
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia Tel.: + 421-41513-2610
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
autor
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • 1. Abdulrahman, A.S., Jabrail, F.H., 2022. Treatment of scrap tire for rubber and carbon black recovery. Recycling, 7(3), 27.10.3390/recycling7030027
  • 2. Adhikari, B, Maiti, D.De, S., 2000. Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909-948.10.1016/S0079-6700(00)00020-4
  • 3. Gomes, J., Mota, H., Bordado, J., Cadete, M., Sarmento, G., Ribeiro, A., Baiao, M., Fernandes, J., Pampulim, V., Cistódio, M., et al., 2010. Toxicological assessment of coated versus uncoated rubber granulates obtained from used tires for use in sport facilities. J. Air Waste Manag. Assoc., 60, 741-746.10.3155/1047-3289.60.6.74120565000S
  • 4. Gu, J.D., Ford, T.E., Mitton, R.M., 2000. Microbial corrosion of metals. The Uhlig Corrosion Handbook (second ed.), 915-927
  • 5. Ippoliti, M., Fragassa, C., 2016. Technology assessment of tire Mould cleaning systems and quality finishing. Int. J. Qual. Res., 10, 523-546.
  • 6. Katzenberg, F., Tiller, J.C., 2016. Shape memory natural rubber. J. Polym. Sci. Part B Polym. Phys., 54, 1381-1388.10.1002/polb.24040
  • 7. Khamani, S. et al., 2018. Butyl rubber-aluminium adhesion: The effect of acids and alkaline environments on adhesion strength. J. of Environmental Polym. Degradation, 26, 989-998.10.1007/s10924-017-1007-4
  • 8. Lapkovskis, V., Mironovs, V., Kasperovich, A., Myadelets, V., Goljandin, D., 2020. Crumb rubber as a secondary raw material from waste rubber: A short review of end-of-life mechanical processing methods. Recycling, 5, 32.10.3390/recycling5040032
  • 9. Lee, K.H., et al., 2016. Effect of thermal and humidity aging on the interfacial adhesion of polyketone fiber reinforced natural rubber composites. Advances in Materials Science and Engineering, 2016, article ID 4159072.10.1155/2016/4159072
  • 10. Nawong, C., Umsakul, K., Sermwittayawong, N., 2018. Rubber gloves bio-degradation by a consortium, mixed culture and pure culture isolated from soil samples. Braz. J. Microbiol., 49, 481-488.10.1016/j.bjm.2017.07.006611205329449176
  • 11. Nguyen, L.H., Nguyen, H.D., Tran, P.T., et al., 2020. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Biodegradation, 31, 303-317.10.1007/s10532-020-09911-032914250
  • 12. Rajabi, F.H., Nikje, M.M.A., Taslimipour, T., 2010. Epoxidation of Styrene-Butadiene Rubber (SBR) using in situ Generated Dimethyldioxirane (DMD): Characterization and kinetic study. Des. Monomers Polym., 13, 535-546.10.1163/138577210X530648S
  • 13. Rose, K., 2005. Biodegradation of natural rubber and related compounds: Recent insights into a hardly understood catabolic capability of microorganism. Applied and Environmental Microbiology, 71(6).10.1128/AEM.71.6.2803-2812.2005115184715932971
  • 14. Sajithkumar, K.J., Visakh, P.M., Ramasamy, E.V., 2016. Moringa oleifera (drum stick vegetable fibre) based nanocomposites with natural rubber: Preparation and characterization. Waste Biomass-Valorization, 7, 1227-1234.10.1007/s12649-016-9499-z
  • 15. Seghar, S., Asaro, L., Rolland-Monnet, M., Hocine, N.A., 2019. Thermo-mechanical devulcanization and recycling of rubber industry waste. Resour. Conserv. Recycl., 144, 180-186.10.1016/j.resconrec.2019.01.047
  • 16. Shah, A.A., Hasan, F., Shah, Z., Kanwal, N., Zeb, S., 2013. Biodegradation of natural and synthetic rubbers: A review. International Biodeterioration & Biodegradation, 83, 145-157.10.1016/j.ibiod.2013.05.004
  • 17. Wik, A., Dave, G., 2009. Occurrence and effects of tire wear particles in the environment – A critical review and an initial risk assessment. Environ. Pollut., 157, 1-11.10.1016/j.envpol.2008.09.02818990476
  • 18. Yehia, A.A., Ismail, M.N., Hefny, Y.A., Abdel-Bary, E.M., Mull, M.A., 2004. Mechano-Chemical reclamation of waste rubber powder and its effect on the performance of NR and SBR vulcanizates. J. Elastomers Plast., 36, 109-123.10.1177/0095244304039896
  • 19. Zanchet, A., et al., 2019. The influence of UV-accelerated aging process on industrial waste containing EPDM. Recycling, 4(2), 25.10.3390/recycling4020025
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54f74d91-4a99-471c-af75-aad1b51aa294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.