PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of various thermodynamic instability parameters and their association with the rainfall during thunderstorm events over Anakapalle (Visakhapatnam district), India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thunderstorm events usually take place in cumulonimbus clouds which are complemented with intense rainfall and highspeed winds. In general, rainfall parameter has massive signifcance when compared to other parameters. In this paper, a group of thunderstorm-related stability parameters were analyzed for pre-monsoon season only. Later, we also tried to study the association between thunderstorm-related stability parameters and rainfall parameter in pre-monsoon season over Anakapalle (Visakhapatnam district) during 2001–2010. We have utilized ERA-Interim ECMWF reanalysis daily datasets for this study. We also tried to compare IMD thunderstorm occurrence days with NOAA CPC-calculated rainfall days in pre-monsoon season over Anakapalle region for every year during 2001–2010. Out of those parameters, upward vertical velocity, convective available potential energy, K-index (KI), humidity index and total totals index parameters have shown good thresholds supporting the rainfall activity during pre-monsoon season. Later, we have also attempted the prediction of DCI and KI parameters over Anakapalle region using artifcial neural network (ANN) and auto-regressive moving average (ARMA) techniques. In comparison between the two techniques, ANN technique has shown good correlation with ERAInterim ECMWF reanalysis data.
Czasopismo
Rocznik
Strony
1549--1564
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Department of Atmospheric Science, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
  • Department of Atmospheric Science, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
autor
  • Space Applications Centre (SAC), Ahmedabad 380023, India
autor
  • Department of Physics, Andhra Loyola College, Vijayawada 520008, India
  • Department of CSE, Dhanekula Institute of Engineering and Technology, Ganguru,Vijayawada 521139, India
  • Department of English, Andhra Loyola College, Vijayawada 520008, India
Bibliografia
  • 1. Ali AF, Johari D, Ismail NF, Musirin I, Hashim N (2011) Thunderstorm forecasting by using artificial neural network. In: Proceeding of the 5th international power engineering and optimization conference, Selangor, Malaysia, pp 369–374
  • 2. Barlow WR (1993) A new index for prediction of deep convection. In: Preprints, 17th conference on severe local storms. American Meteorological, St. Louis, MO, pp 129–132
  • 3. Bhardwaj P, Singh O, Kumar D (2017) Spatial and temporal variations in thunderstorm casualties over India. J Trop Geogr 38:293−312
  • 4. Box GE, Jenkins GM (1976) Time series analysis: forecasting and control, 2. Holden-Day, San Francisco
  • 5. Chaudhuri S, Middey A (2012) A composite stability index for dichotomous forecast of thunderstorms. Theor Appl Climatol 110:457–469
  • 6. Chaudhuri S, Middey A (2013) Nowcasting lightning flash rate and peak wind gust associated with Severe thunderstorms using remotely sensed TRMM-LIS data. Int J Remote Sens 34(5):1576–1590
  • 7. De Coning E, Gijben M, Maseko B, Vanhemert L (2015) Using satellite data to identify and track intense thunderstorms in south and Southern Africa. South Afr J Sci 111(7–8):1–5
  • 8. Galway GJ (1956) The lifted index as a predictor of latent instability. Bull Am Meteor Soc 37(10):528–529
  • 9. George GJ (1960) Weather forecasting for aeronautics. Academic Press, Cambridge, p 673
  • 10. Ghanfarzadeh A and Noghreh A (2009) Wind speed prediction based on simple meteorological data using artificial neural network. In: 7th IEEE international conference on industrial information, India
  • 11. Goyal S, Kumar A, Mohapatra M, Rathore LS, Dube SK, Saxena R, Giri RK (2017) Satellite-based technique for nowcasting of thunderstorms over Indian region. J Earth Syst Sci 126(6):1–13
  • 12. Grieser J (2012) Convection parameters, Selbstverl
  • 13. Jayakrishnan RP, Babu AC (2014) Assessment of convective activity using stability indices as inferred from radiosonde and MODIS data. Atmos Clim Sci 4:122–130
  • 14. Johnson DL (1982) A stability analysis of AVE-IV severe weather sounding. NASA Technical Paper 2045, p 126
  • 15. Jorgensen DP, LeMone MA (1989) Vertical velocity characteristics of oceanic convection. J Atmos Sci 46(5):621–640
  • 16. Kalsi SR (2003) Satellite based weather forecasting. In: Satellite remote sensing and GIS applications in agricultural meteorology, pp 331–346
  • 17. Kandalgaonkar SS, Tinmaker RIM, Kulkarni RJ, Nath A (2003) Diurnal variation of lightning activity over the Indian region. Geophys Res Lett 30(20):2022
  • 18. Kessler E (1982) Thunderstorm morphology and dynam-ics. National Oceanic and Atmospheric Administration, United States Department of Commerce, Environmental Research Laboratories, pp 603
  • 19. Khan JA, and Arsalan MH (2007) General climatology. University of Karachi
  • 20. Kong Y, Chai H, Li J, Pan Z and Chong Y (2017) A modified forecast method of ionosphere VTEC series based on ARMA model. In: IEEE in 2017 Forum on cooperative positioning and service (CPGPS), pp 90–95
  • 21. Litynska Z, Parfiniewicz J, Pinkowski H (1976) The prediction of air massthunderstorms and hials. W.M.O 450:128–130
  • 22. Manzato A (2005) The use of sounding-derived indices for a neural network short-term thunderstorm forecast. Weather Forecast 20(6):896–917
  • 23. McCann DW (1992) A neural network short-term forecast of significant thunderstorms. Weather Forecast 7:525–534
  • 24. Miller RC (1967) Notes on analysis and severe storm forecasting procedures of the Military Weather Warning Center. Technical Report 200, AWS, USAF
  • 25. Miller RC (1972) Notes on analysis and severre storm forecasting procedures of the Air Force Global Weather Central. Technical Report 200(R), Headquarters, Air Weather Service, Scott Air Force Base, IL 62225, p 190
  • 26. Moncrieff MW, Miller MJ (1976) The dynamics and simulation of tropical cumulonimbus and squall lines. Q J R Meteorol Soc 102(432):373–394
  • 27. Nayak HP, Mandal M (2014) Analysis of stability parameters in relation to precipitation associated with pre-monsoon thunderstorms over Kolkata India. J Earth Syst Sci 123(4):689–703
  • 28. Purdom JFW (2003) Local severe storms monitoring and prediction using satellite systems. Mausam 54(1):141–154
  • 29. Ratnam DV, Otsuka Y, Sivavaraprasad G, Dabbakuti JK (2019) Development of multivariate ionospheric TEC forecasting algorithm using linear time series model and ARMA over low-latitude GNSS station. Adv Space Res 63(9):2848–2856
  • 30. Ravi N, Mohanty CU, Madan PO, Paliwal KR (1999) Forecasting of thunderstorms in the pre-monsoon season at Delhi. Meteorol Appl 6:29–38
  • 31. Ray K, Bandopadhyay BK, Sen B, Sharma P, Warsi AH, Mohapatra M, Yadav BP, Debnath GC, Stella S, Das S, Duraisamy M, Rajeev VK, Barapatre V, Paul S, Singh H, SaiKrishnan KC, Goyal S, Das AK, Bhan SC, Sikka DR, Chakravarthy K, Tyagi A, Das S and Rathore LS (2014) PreMonsoon Thunderstorms 2014: a Report, IMD Report No. ESSO/IMD/SMRC STORM PROJECT-2014/01(2014)/03
  • 32. Reymann M, Piasecki J, Hosein F, Larabee S, Williams G, Jiminez M, Chapdelaine D (1998) Meteorological techniques. Technical Note, AFWA, U.S. Air Force, p 242
  • 33. Saha U, Maitra A, Midya SK, Das GK (2014) Association of thunderstorm frequency with rainfall occurrences over an Indian urban metropolis. Atmos Res 138:240–252
  • 34. Srinivasan VK, Ramamurthy and Nene YR (1973) Summer nor’wester and Andhi and large scale convective activity over peninsula and central parts of the country. India Meteorological Department Forecasting Manual Part 3, p 137
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54ef4d14-97d6-4a4b-98b7-c117b4ae7d07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.