PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computerized Tomography Noise Reduction by CICT Optimized Exponential Cyclic Sequences (OECS) Co-domain

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In general, a theoretical Computerized Tomography (CT) imaging problem can be formulated as a system of linear equations. The discrete inverse problem of reconstructing finite subsets of the n-dimensional integer lattice Zn that are only accessible via their line sums (discrete x-rays), in a finite set of lattice directions, results into an even more ill-posed problem, from noisy data. Because of background noise in the data, the reconstruction process is more difficult since the system of equations becomes inconsistent easily. Unfortunately, with every different kind of CT, as with many contemporary advanced instrumentation systems, one is always faced with an additional experimental data noise reduction problem. By using Information Geometry (IG) and Geometric Science of Information (GSI) approach, it is possible to extend traditional statistical noise reduction concepts and to develop new algorithm to overcome many previous limitations. On the other end, in the past five decades, trend in Systems Theory, in specialized research area, has shifted from classic single domain information channel transfer function approach (Shannon’s noisy channel) to the more structured ODR Functional Sub-domain Transfer Function Approach (Observation, Description and Representation), according to computational information conservation theory (CICT) Infocentric Worldview model (theoretically, virtually noise-free data). CICT achieves to bringing classical and quantum information theory together in a single framework, by considering information not only on the statistical manifold of model states but also from empirical measures. In fact, to grasp a more reliable representation of experimental reality and to get stronger physical and biological system correlates, researchers and scientists need two intelligently articulated hands: both stochastic and combinatorial approaches synergically articulated by natural coupling. As a matter of fact, traditional rational number system Q properties allow to generate an irreducible co-domain for every computational operative domain used. Then, computational information usually lost by using classic LTR computational approach only, based on the traditional noise-affected data model stochastic representation (with high-level perturbation computational model under either additive or multiplicative perturbation hypothesis), can be captured and fully recovered to arbitrary precision, by a corresponding complementary co-domain, step-by-step. In previous paper, we already saw that CICT can supply us with Optimized Exponential Cyclic numeric Sequences (OECS) co-domain perfectly tuned to low-level multiplicative noise source generators, related to experimental high-level overall perturbation. Now, associated OECS co-domain polynomially structured information can be used to evaluate any computed result at arbitrary scale, and to compensate for achieving multi-scale computational information conservation.
Wydawca
Rocznik
Strony
115--134
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Department of Electronics, Information and Bioengineering (DEIB) Politecnico di Milano P.za Leonardo da Vinci 32, 20133 Milano, Italy
Bibliografia
  • [1] Akimoto, Y., Ollivier, Y.: Objective Improvement in Information-Geometric Optimization, Proc. FOGA13, ACM 978-1-4503-1990-4/13/01, January 16-20, 2013, Adelaide, Australia.
  • [2] Alpers, A., Gardner, R. J., König, S., Pennington, R. S., Boothroyd, C. B., Houben, L., Dunin-Borkowski, R. E., Batenburg, K. J.: Geometric reconstruction methods for electron tomography, Ultramicroscopy, (128), 2013, 42–54.
  • [3] Amari, S. I., Nagaoka, H.: Methods of information geometry, American Mathematical Society, Providence, U.S.A., 2000, Translations of Mathematical Monographs, vol. 191, p. 206, (from the 1993 Japanese original by Daishi Harada).
  • [4] Bae, E.: Efficient Global Minimization Methods for Variational Problems in Imaging and Vision, Ph.D. Thesis, Department of Mathematics, University of Bergen, April 2011.
  • [5] Barbaresco, F.: Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, Mostow/Berger fibration and Fr´echet median, Matrix Information Geometry, 2013, 199–255, F. Nielsen, R. Bhatia (Eds).
  • [6] Barbaresco, F.: Eidetic Reduction of Information Geometry Through Legendre Duality and Koszul Characteristic Function and Entropy: From Massieu-Duhem Potentials to Geometric Souriau Temperature and Balian Quantum Fisher Metric, Springer International Publishing Switzerland, 2014, 141–217.
  • [7] Batenburg, K., Sijbers, J.: Dart: A Fast Heuristic Algebraic Reconstruction Algorithm for Discrete Tomography, IEEE, 2007, IV–133–IV–136.
  • [8] Caliman, A., Ivanovici, M., Richard, N.: Probabilistic pseudo-morphology for grayscale and color images, Pattern Recognition, (47), 2004, 721–35.
  • [9] Doran, C., Lasenby, A.: Geometric Algebra for Physicists, Cambridge University Press, Cambridge, U.K., 2007.
  • [10] Eco, U.: A Theory of Semiotics, Macmillan: London, 1976.
  • [11] Eulero, L.: Institutiones Calculi Differentialis, Academia Imperialis Scientiarum Petropolitanae, St. Petersburg, 1775.
  • [12] Ferretti, E.: The Cell Method, A Purely Algebraic Computational Method in Physics and Engineering, Momentum Press, New York, 2014.
  • [13] Fiorini, R. A.: Computational Information Conservation Theory: An Introduction, Proceedings of the 8th International Conference on Applied Mathematics, Simulation, Modelling (ASM ’14), N.E. Mastorakis, M. Demiralp, N. Mukhopadhyay, F. Mainardi, eds., Mathematics and Computers in Science and Engineering Series No.34, 385–394, WSEAS Press, November 22-24, 2014, Florence, Italy.
  • [14] Fiorini, R. A.: Strumentazione Biomedica: Sistemi di Supporto Attivo, CUSL, Collana Scientifica, Milano. Italy, (pp.180), 1994.
  • [15] Fiorini, R. A.: The Entropy Conundrum: A Solution Proposal, First International Electronic Conference on Entropy and Its Applications, Sciforum Electronic Conference Series, a011; doi:10.3390/ecea-1-a011, (1), 2014, Available from http://sciforum.net/conference/ecea-1/paper/2649.
  • [16] Fiorini, R. A.: How Random is Your Tomographic Noise? A Number Theoretic Transform (NTT) Approach, Fundamenta Informaticae, 135(1-2), 2014, 135–170.
  • [17] Fiorini, R. A., Condorelli, A., Laguteta, G.: Discrete Tomography Data Footprint Reduction via Natural Compression, Fundamenta Informaticae, 125(3-4), 2013, 273–284.
  • [18] Fiorini, R. A., Laguteta, G.: Discrete Tomography Data Footprint Reduction by Information Conservation, Fundamenta Informaticae, 125(3-4), 2013, 261–272.
  • [19] Fiorini, R. A., Santacroce, G.: Economic Competitivity in Healthcare Safety Management by Biomedical Cybernetics ALS, Proc. International Symposium, The Economic Crisis: Time For A Paradigm Shift – Towards a Systems Approach, Universitat de Val`encia, January 24-25, 2013.
  • [20] Fiorini, R. A., Santacroce, G.: Systems Science and Biomedical Cybernetics for Healthcare Safety Management, Proc. International Symposium, The Economic Crisis: Time For A Paradigm Shift - Towards a Systems Approach, Universitat de Val`encia, January 24-25, 2013.
  • [21] Flynt, C.: Tcl/Tk: A Developer’s Guide, Elsevier, Amsterdam, The Netherlans, 2012, 752-753.
  • [22] Franklin, G. F., Powell, J. D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, Pearson Higher Education, Inc., Upper Saddle River, NJ, USA, 2010.
  • [23] Franklin, G. F., Powell, J. D., Workman, M.: Digital Control of Dynamic Systems, Ellis-Kagle Press, Half Moon Bay, CA, USA, 1998.
  • [24] Heijmans, H. J.: Morphological Image Operators, Academic Press, Boston, 1994.
  • [25] Heijmans, H. J., Keshet, R.: Inf-semilattice approach to self-dual morphology, J. Math. Imaging Vis., 17(1), 2002, 55–80.
  • [26] Hestenes, D. O.: Space-Time Algebra, Routledge, New York, 1966.
  • [27] Hestenes, D. O., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Fundamental Theories of Physics, D. Reidel Publishing Company, Dordrecht, Holland, 1984.
  • [28] Hestenes, D. O., Sobczyk, G.: New Foundations for Classical Mechanics, Fundamental Theories of Physics, D. Reidel Publishing Company, Dordrecht, Holland, 1986.
  • [29] Hockett, C.: A Course in Modern Linguistics, Macmillan: New York, 1958.
  • [30] Hockett, C.: The Origin of Speech, Scientific American, (203), 1960, 89–96.
  • [31] Jordan, C.: Calculus of Finite Difference, Budapest, 1939.
  • [32] Keshet, R.: Mathematical morphology on complete semilattices and its applications to image processing, Fundamenta Informaticae, (41), 2000, 33–56.
  • [33] Kullback, S., Leibler, R. A.: On Information and Sufficiency, Annals of Mathematical Statistics, 22(1), 1951, 79–86.
  • [34] Manovich, L.: The Langage of New Media, MIT Press, Cambridge, 2001.
  • [35] Matsuzoe, H.: Statistical manifolds and affine differential geometry, Adv. Stud. Pure Math., 57, 2010, 303–321.
  • [36] Miller, J. E.: The Chicago Guide to Writing about Numbers, University of Chicago Press, Chicago, U.S.A., 2008.
  • [37] Naudts, J., Anthonis, B.: Data set models and exponential families in statistical physics and beyond, Mod. Phys. Lett. B, 26(10), 2012, 1250062.
  • [38] Nielsen, F., Barbaresco, F., (Eds.): Geometric Science of Information, Proceedings Series: Lecture Notes in Computer Science, Vol. 8085; Springer, First International Conference, GSI 2013, Paris, France, 2013.
  • [39] Nielsen, F., (Ed.): Geometric Theory of Information, Springer International Publishing, Switzerland, 2014.
  • [40] Orlicz,W.: Ueber eine gewisse Klasse von R¨aumen vom Typus B, Bull. Intern. Acad. Pol. Ser. A, (8/9), 1932, 207–220.
  • [41] O’Sullivan, J. A., Xie, L., Politte, D. G., Whiting, B. R.: Image reconstruction performance as a function of model complexity using information geometry: application to transmission tomographic imaging, Proc. SPIE 6498, Computational Imaging V, 649806, 2007.
  • [42] Pistone, G.: Nonparametric Information Geometry, GSI, Paris, August 2013, Available from http://www.giannidiorestino.it/GSI2013-talk.pdf.
  • [43] Pollard, H.: The Stieltjes integral and its generalizations, The Quarterly Journal of Pure and Applied Mathematics, 19, 1920.
  • [44] Rao, C. R.: Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., (37), 81–89, ).
  • [45] Sbaiz, L., Yang, F., Charbon, E., S¨usstrunk, S., Vetterli, M.: The gigavision camera, Proceedings of IEEE ICASSP09, 2009, 1093–1096.
  • [46] Segal, D.: Polycyclic groups, Cambridge University Press, Cambridge, 1983.
  • [47] Serra, J.: Image Analysis and Mathematical Morphology, Vol. II: theoretical advances, Academic Press, London, 1988.
  • [48] Soille, P.: Morphological Image Analysis, Springer-Verlag, Berlin, 1999.
  • [49] Stam, R.: Film Theory, Blackwell: Oxford, 2000.
  • [50] Stirling, J.: Methodus Differentialis, London, 1730.
  • [51] Taylor, B.: Methodus Incrementorum, London, 1717.
  • [52] Tonti, E.: Why starting from differential equations for computational physics?, Journal of Computational Physics, (257), 1260–1290, ),.
  • [53] Tonti, E.: The Mathematical Structure of Classical and Relativistic Physics, Springer, New York, 2013.
  • [54] VanAert, S., Batenburg, K. J., Rossell, M. D., Erni, R., VanTendeloo, G.: Three-dimensional atomic imaging of crystalline nanoparticles, Nature, (470), 2011, 374–377.
  • [55] Wehrfritz, B. A.: Group and Ring Theoretic Ptoperties of Polycyclic Groups, Springer-Verlag, London, 2009.
  • [56] Zegarelli, M.: Basic Math and Pre-Algebra Workbook For Dummies, John Wiley and Sons, New York, U.S.A., 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54eedc15-377f-47b4-8bbb-135a86968321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.