PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties and geometric accuracy of angle-shaped parts manufactured using the FFF method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the influence of the parameters of Fused Deposition Modelling (FDM) on the mechanical properties and geometric accuracy of angle-shaped parts. The samples were manufactured from acrylonitrile butadiene styrene (ABS) on a universal machine. A complete factorial experiment was conducted. The results indicated that the critical technological parameter was the angular orientation of the sample in the working chamber of the machine. The results were compared with the results of research performed on simple rectangular samples. A significant similarity was found in the relationships between the FDM parameters and properties for both sample types.
Rocznik
Strony
art. no. e137387
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • [1] T. Kudasik and S. Miechowicz, “Methods of reconstructing complex multi-structural anatomical objects with RP techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 315‒323 (2016), doi: 10.1515/bpasts-2016-0036.
  • [2] O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology, promises and challenges”, Rapid Prototyp. J. 19, 353‒364 (2013), doi: 10.1108/RPJ-12-2011-0127.
  • [3] J. Safka, M. Ackermann, and D. Martis, “Chemical resistance of materials used in additive manufacturing”, MM Sci. J. 2016, 1573‒1578 (2016), doi: 10.17973/MMSJ.2016_12_2016185.
  • [4] R.I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing, rapid Prototyp. comes of age”, Rapid Prototyp. J. 18, 255‒258 (2012), doi: 10.1108/13552541211231563.
  • [5] T. Kudasik, M. Libura, O. Markowska, and S. Miechowicz, “Methods for designing and fabrication large-size medical models for orthopaedics”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 623‒627 (2015), doi: 10.1515/bpasts-2015-0073.
  • [6] G.N. Levy, R. Schindel, and J.P. Kruth, “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives”, CIRP Ann. 52, 589‒609 (2003), doi: 10.1016/S0007-8506(07)60206-6.
  • [7] D. Croccolo, M. De Agostinis, and G. Olmi, “Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30”, Comput. Mater. Sci. 79, 506–518 (2013), doi: 10.1016/j.commatsci.2013.06.041.
  • [8] S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing”, Chem Rev. 117, 10212‒10290 (2017), doi: 10.1021/acs.chemrev.7b00074.
  • [9] I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining and 3D Printing”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136722 (2021), doi: 10.24425/bpasts.2021.136722.
  • [10] D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens, A review”, Polym. Test. 69, 157‒166 (2018), doi: 10.1016/j.polymertesting.2018.05.020.
  • [11] M. Montero, R. Shad, D. Odell, S.H. Ahn, and P.K. Wright, “Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments”, Soc. Manuf. Eng. 10, 1‒21 (2001).
  • [12] H.C. Song, N. Ray, D. Sokolov, and S. Lefebvre, “Anti-aliasing for fused filament deposition. Comput”, Aided Des. 89, 25‒34 (2017), doi: 10.1016/j.cad.2017.04.001.
  • [13] S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyp. J. 8, 248‒257 (2002), doi: 10.1108/13552540210441166.
  • [14] C. Casavola, A. Cazzato, V. Moramarco, and C. Pappalettere, “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”, Mater. Des. 90, 453‒458 (2016), doi: 10.1016/j.matdes.2015.11.009.
  • [15] O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, J. Mater. Eng. Perform. 25, 2922–2935 (2016), doi: 10.1007/s11665-016-2157-6.
  • [16] A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Mater. Des. 31, 287–295 (2010), doi: 10.1016/j.matdes.2009.06.016.
  • [17] G.C. Onwubolu and F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process”, Int. J. Manuf. Eng. 2014, 598531 (2014), doi: 10.1155/2014/598531.
  • [18] M. Spoerk, F. Arbeiter, H. Cajner, J. Sapkota, and C. Holzer, “Parametric optimization of intra and interlayer strengths in parts produced by extrusion based additive manufacturing of poly(lactic acid)”, J. Appl. Polym. Sci. 134, 45401 (2017), doi: 10.1002/app.45401.
  • [19] A. Peng, X. Xiao, and R. Yue, “Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system”, Int. J. Adv. Manuf. Technol. 73, 87‒100 (2014), doi: 10.1007/s00170-014-5796-5.
  • [20] G. Papazetis, G.C. Vosniakos, “Mapping of deposition-stable and defect-free additive manufacturing via material extrusion from minimal experiments”, Int. J. Adv. Manuf. Technol. 100, 2207‒2219 (2019), doi: 10.1007/s00170-018-2820-1.
  • [21] S. Mahmood, A.J. Qureshi, K.L. Goh, and D. Talamona, “Tensile strength of partially filled FFF printed parts, experimental results”, Rapid Prototyp. J. 23, 122‒128 (2017), doi: 10.1108/RPJ-08-2015-0115.
  • [22] S. Abid et al., “Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design”, Int. J. Adv. Manuf. Technol. 100, 1363‒1372 (2019), doi: 10.1007/s00170-018-2710-6.
  • [23] V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, and A.G Tavitov, “Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process”, Polymers 10, 1‒16 (2018), doi: 10.3390/polym10030313.
  • [24] L. Yang, S. Li, Y. Li, and Y. Mingshun, “Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts”, J. Mater. Eng. Perform. 28, 169‒182 (2019), doi: 10.1007/s11665-018-3784-x.
  • [25] J.T. Belter and A.M. Dollar, “Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique”, PloS One 10(4) (2015), doi: 10.1371/journal.pone.0122915.
  • [26] J.A. Gopsill, J. Shindler, and B.J. Hicks, “Using finite element analysis to influence the infill design of fused deposition modelled parts”, Prog. Addit. Manuf. 3, 145‒163 (2018), doi: 10.1007/s40964-017-0034-y.
  • [27] G.A.M. Capote, N.M. Rudolph, P.V. Osswald, and A.T. Osswald, “Failure surface development for ABS fused filament fabrication parts”, Addit. Manuf. 28, 169‒175 (2019), doi: 10.1016/j.addma.2019.05.005.
  • [28] F. Gorski, R. Wichniarek, W. Kuczko, and A. Hamrol, “Selection of Fused Deposition Modeling Process Parameters using Finite Element Analysis and Genetic Algorithms”, J. Mult.-Valued Logic Soft Comput. 32, 293‒311 (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54e7dae9-8681-4d13-a615-9d5de6a33b9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.