Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Precision casting is currently motivated by high demand especially for castings for the aerospace, automotive and gas turbine industries. High demands on precision of this parts pressure foundries to search for the new tools which can help them to improve the production. One of these tools is the numerical simulation of injection process, whereas such software especially for investment casting wax injection, process does not exist yet and for this case must be the existing software, for alloys or plastic, modified. This paper focuses on the use of numerical simulations to predict the behavior of injected models of gas turbine blades segments. The properties of wax mixtures, which were imported into the Cadmould simulation software as a material model, were found. The results of the simulations were verified using the results of 3D scanning measurements of wax models. As a supporting technology for verifying the results was used the Infrared Thermography.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
101--106
Opis fizyczny
Bibliogr. 8 poz., fot., rys., tab.
Twórcy
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Prague, Czech Republic
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Prague, Czech Republic
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Prague, Czech Republic
Bibliografia
- [1] Kubelkova, I., Herman, A., Vratny, O. (2017). Evaluation of Critical Places on Wax Patterns of Blades, Proceedings of the 28th DAAAM International Symposium, (pp.1126-1135), B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-11-2, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/28th.daaam.proceedings.157.
- [2] Dong, YW., Zhao,Q., Li, XI., Li, XJ., Yang, J. (2017). Methodology to develop geometric modeling of accurate drilled cooling holes on turbine blades, proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, AMER Soc Mechanical Engineers, Three Park Avenue, New York, NY (pp. 10016-5990) USA, ISBN:978-0-7918-5091-6.
- [3] Wang, D., He, B., Liu, S. et al. (2016). Dimensional shrinkage prediction based on displacement field in investment casting. The International Journal of Advanced Manufacturing Technology. 85(1-4), 201-208. https://doi.org /10.1007/s00170-015-7836-1.
- [4] Teena, M., Manickavasagan, A. (2014). Thermal Infrared Imaging, Imaging with Electromagnetic Spectrum, pp 147-173.
- [5] Wang, S. & Millogo J.D.H. (2011). Rapid prototype mold for wax patterns with the help of phase change materials. The international Journal of Advanced Manufacturing Technology. 62(1-4), 35-41.
- [6] Zhang, S., Xu, Z. & Wang, Z. (2016). Numerical modeling and simulation of water cooling-controlled solidification for aluminium alloy investment casting. The International Journal of Advanced Manufacturing Technology. 91(1-4), 763-770.
- [7] Rahimian, M., Milenkovic, S., Maestro, L., et al. (2015). Physical Simulation of Investment Casting of Complex Shape Parts. Metallurgical and Materials Transactions A. 46(5), 2227-2237.
- [8] Kubelkova, I., Herman, A. (2018). Determination of the simulation parameters of the waxes used in investment casting. Proceedings of the 29th DAAAM International Symposium, B. Katalinic (Ed.), Published by DAAAM International, Vienna, Austria ISBN 978-3-902734-11-2, ISSN 1726-9679.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54e70d4f-14d8-4e9b-afcf-7496f5b9e72d