PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Objective Evolutionary Optimization of Aperiodic Symmetrical Linear Arrays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a multi-objective approach is applied to the design of aperiodic linear arrays of antennas. The adopted procedure is based on a standard Matlab implementation of the Controlled Elitist Non-Dominated Sorting Genetic Algorithm II. Broadside symmetrical arrays of isotropic radiators are considered with both uniform and non-uniform excitations. The work focuses on whether, and in which design conditions, the aperiodic solutions obtained by the adopted standard multi-objective evolutionary procedure can approximate or outperform the Pareto-optimal front for the uniformspacing case computable by the Dolph-Chebyshev method.
Rocznik
Tom
Strony
79--87
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Enrico Fermi 45, 00044 Frascati (RM), Italy
autor
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
autor
  • Department of Engineering and Architecture, University of Trieste, Trieste, Italy
autor
  • National Institute of Telecommunications, Warsaw, Poland
Bibliografia
  • [1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Michigan: University of Michigan Press, 1975.
  • [2] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Natural Computing Series. Heidelberg, Germany: Springer, 2003.
  • [3] R. Haupt, “Thinned arrays using genetic algorithms”, IEEE Trans. on Antenn. and Propag., vol. 2, no. 7, pp. 712–715, 1994 (doi: 10.1109/8.299602).
  • [4] J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics”, IEEE Antenn. and Propag. Mag., vol. 39, no. 4, pp. 7–21, 1997
  • [5] C. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Hoboken, New Jersey: Wiley, 2005.
  • [6] C. L. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level”, Proc. of the IRE, vol. 34, no. 6, pp. 335–348, 1946 (doi: 10.1109/JRPROC.1946.225956).
  • [7] W. Doyle, “On approximating linear array factors”, RAND Corporation Research Memoranda, Article ID RM-3530-PR, 1963.
  • [8] M. H. Er, S. L. Sim, and S. N. Koh, “Application of constrained optimization techniques to array pattern synthesis”, Sig. Process., vol. 34, no. 3, pp. 323–334, 1993.
  • [9] Y. C. Jiao, W. Y. Wei, L. W. Huang, and H. S. Wu, “A new low-sidelobe pattern synthesis technique for conformal arrays”, IEEE Trans. on Antenn. and Propag., vol. 41, no. 6, pp. 824–830, 1993.
  • [10] G. Toso, C. Mangenot, and A. G. Roederer, “Sparse and thinned arrays for multiple beam satellite applications”, in Proc. 29th ESA Antenna Worksh., Noordwijk, The Netherlands, 2007.
  • [11] P. Angeletti and G. Toso, “Aperiodic arrays for space applications: A combined amplitude/density synthesis approach”, in Proc. 3rd Eur. Conf. on Antenn. and Propag. EuCAP 2009, Berlin, Germany, 2009.
  • [12] O. M. Bucci, M. D’Urso, T. Isernia, P. Angeletti, and G. Toso, “Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques”, IEEE Trans. on Antenn. and Propag., vol. 58, no. 6., pp. 1949–1958, 2010.
  • [13] G. Olivieri, M. Donelli, and A. Massa, “Linear array thinning exploiting almost difference sets”, IEEE Trans. on Antenn. and Propag., vol. 57, no. 12, pp. 3800–3812, 2009.
  • [14] G. Olivieri, P. Rocca, and A. Massa, “Analytic techniques for the design of non-regular arrays”, in Proc. IEEE Int. Symp. on Phased Array Syst. and Technol., Waltham, MA, USA, 2010 (doi: 10.1109/ARRAY.2010.5613281).
  • [15] K. K. Yan and Y. Lu, “Side lobe reduction in array-pattern synthesis using genetic algorithm”, IEEE Trans. on Antenn. and Propag., vol. 45. no. 7, pp. 1117–1122, 1997.
  • [16] F. J. Ares-Pena, J. A. Rodriguez-Gonzalez, E. Villanueva-Lopez, and S. R. Rengarajan, “Genetic algorithms in the design and optimization of antenna array patterns”, IEEE Trans. on Antenn. and Propag., vol. 47, no. 3, pp. 506–510, 1999.
  • [17] D. Ansell and E. J. Hughes, “Use of multi-objective genetic algorithms to optimize the excitation and subarray division of multifunction radar antennas”, in Proc. IEE Multifunc. Radar and Sonar Sensor Manag. Techniq., London, UK, 2001, vol. 8, pp. 1–4 (doi: 10.1049/ic:20010185).
  • [18] M. G. Bray, D. H. Werner, D. W. Boeringer, and D. W. Machuga, “Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning”, IEEE Trans. on Antenn. and Propag., vol. 50, no. 12, pp. 1732–1742. 2002.
  • [19] D. Ansell and E. J. Hughes, “Using multi-objective genetic algorithms to optimise the subarray partitions of conformal array antennas”, IEEE Trans. on Antenn. and Propag., vol. 52, pp. 151–155, 2004.
  • [20] M. A. Panduro, C. A. Brizuela, D. H. Covarrubias, and C. Lopez, “A multi-objective approach in the linear antenna array design”, Int. J. of Electron. and Commun., vol. 59, no. 4, pp. 205–212, 2004.
  • [21] M. A. Panduro, D. H. Covarrubias, C. A. Brizuela, and F. R. Marante, “A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach”, Soft Comput., vol. 10, no. 2, pp. 125–131, 2005.
  • [22] K. Cheng, X. Yun, Z. He, and C. Han, “Synthesis of sparse planar arrays using a modified real genetic algorithm”, IEEE Trans. on Antenn. and Propag., vol. 55, no. 4, pp. 1067–1073, 2007.
  • [23] M. A. Panduro, C. A. Brizuela, and D. H. Covarrubias, “Design of electronically steerable linear arrays with evolutionary algorithms”, Appl. Soft Comput., vol. 8, no. 1, pp. 46–54, 2008 (doi: 10.1016/j.asoc.2006.10.011).
  • [24] M. A. Panduro, D. H. Covarrubias, and A. L. Mendez, “Design of phased antenna arrays using evolutionary optimization techniques”, in Advances in Evolutionary Algorithms, W. Kosinski, Ed. Vienna, Austria: I-Tech Education and Publishing, 2008, pp. 361–376.
  • [25] F. Tokan and F. Gunes, “The multi-objective optimization of nonuniform linear phased arrays using the genetic algorithm”, Progr. in Electromag. Res. B, vol. 17, pp. 135–151, 2009.
  • [26] S. Pal, B. Y. Qu, S. Das, and P. N. Suganthan, “Optimal synthesis of linear antenna arrays with multi-objective differential evolution”, Progr. in Electromag. Res. B, vol. 21, pp. 87–111, 2010.
  • [27] S. Pal, S. Das, and A. Basak, “Design of time-modulated linear arrays with a multi-objective optimization approach”, Progr. in Electromag. Res. B, vol. 23, pp. 83–107, 2010.
  • [28] M. A. Panduro, C. A. Brizuela, L. I. Balderas, and D. A. Acosta, “A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays”, Progr. in Electromag. Res. B, vol. 13, pp. 171–186, 2009.
  • [29] M. A. Panduro, C. A. Brizuela, and S. Jesus Garza, “A comparison of NSGA-II, DEMO, and EM-MOPSO for the multi-objective design of concentric rings antenna arrays”, J. of Electromag. Waves and Appl., vol. 27, no. 9, pp. 1110–1113, 2013.
  • [30] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Trans. on Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
  • [31] F. Napoli, L. Pajewski, G. Schettini, and R. Vescovo, “On a multiobjective approach in the non-uniform symmetrical linear antenna array design”, in Proc. 5th Eur. Conf. on Antennas and Propag. EuCap 2011, Rome, Italy, 2011.
  • [32] K. Deb and T. Goel, “Controlled elitist non-dominated sorting genetic algorithm for better convergence”, in Evolutionary MultiCriterion Optimization, A. Gaspar-Cunha, C. Henggeler Antunes, C. A. Coello Coello, Eds. LNCS, vol. 1993, pp. 67–81. Springer, 2001.
  • [33] X. Chen, Z. Luo, X. He, and L. Zhu, “Thinning and weighting of planar arrays by modified teaching-learning-based optimization algorithm”, J. of Electromag. Waves and Appl., vol. 28, no. 15, pp. 1924–1934, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54e3712e-df2c-47c8-9e13-c738edd4aebe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.