Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The detonation performance of aluminized energetic materials with enriched nitrogen content is examined. Sodium azide (NaN3, SA) was considered as the component to enhance the nitrogen content in explosive mixtures. SA explosives based on hexogen (RDX) as the representative C-H-N-O explosive, and on ammonium nitrate(V) (NH4NO3, AN) were investigated. Powdered (Alp) or flaked (Alf) aluminum was added as an energetic additive. Detonation of mixtures with added SA revealed highly non-ideal behaviour. Thermodynamic evaluations have been carried out to assess the magnitude of the energy evolved in explosives with added SA, as well as to examine the possible influence of the formation of aluminum nitride (AlN(s)) on the detonation and explosion parameters. The results obtained indicated that, despite the relatively low observed detonation velocities, aluminized RDX/Al/SA and AN/Al/SA mixtures may attain explosion energies of about of 6 MJ/kg and higher. A considerably lower energetic outcome from the formation of AlN(s), in comparison with Al2O3(s), was noted.
Słowa kluczowe
Rocznik
Tom
Strony
520--532
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Military University of Technology, Faculty of Mechatronics and Aerospace, Safety Engineering Division, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
autor
- Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
Bibliografia
- [1] Mahadevan, E.C. Ammonium Nitrate Explosives for Civil Application. Willey-VCH, Weinheim, 2013; ISBN 978-3-527-33028-7.
- [2] Wang, X. Emulsion Explosives. Metallurgy Industry Press, Beijing, 1994; ISBN 978-7502433819.
- [3] Maranda, A. Przemysłowe materiały wybuchowe. (in Polish, ed. transl.: Industrial Explosives.) Military University of Technology, Warsaw, 2010; ISBN 978-83-61486-61-9.
- [4] Wu, J-T.; Zhang, J-G.; Zhang, T-L.; Yang, L. Energetic Nitrogen-rich Salts. Cent. Eur. J. Energ. Mater. 2015, 12(3): 417-438.
- [5] Smirnov, A.; Lempert, D.; Pivina, T. Characterizations of Energetic Polynitrogen Compunds. In: Energetics Science and Technology in Central Europe. University of Maryland, Maryland, 2012, Ch. 7, pp. 97-129; ISBN 978-0-9846274-3-1.
- [6] Maranda, A. Research on the Process of Detonation of Explosive Mixtures of the Oxidizer Fuel Type Containing Aluminium Powder. Propellants Explos. Pyrotech. 1990, 15: 161-165
- [7] Physics of Explosion. (in Russian ed. transl.) (Orlenko, L.P., Ed.), Fizmatlit, Moscow, 2004; ISBN 9785922102192
- [8] Pei, H.; Nie, J.; Jiao, Q. Study on the Detonation Parameters of Aluminized Explosives Based on a Disequilibrium Multiphase Model. Cent. Eur. J. Energ. Mater. 2014, 11(4): 491-500.
- [9] Kim, W.; Gwak M-Ch.; Lee Y-H.; Yoh J.J. A Two-phase Model for Aluminized Explosives on the Ballistic and Brisance Performance. J. Appl. Phys. 2018, 123, 055902.
- [10] Kobylkin, I.F. Critical Detonation Diameter of Industrial Explosive Charges: Effect of the Casing. Combust. Explos. Shock Waves 2011, 47(1): 96-102.
- [11] Steen van den, A.C.; Kodde, H.H. Detonation Velocities of the Non-Ideal Explosive Ammonium Nitrate. Propellants Explos. Pyrotech. 1990, 15(1): 58-61.
- [12] Sulimov, A.A.; Ermolaev, B.S.; Turuntaev, S.B.; Borisov, A.A.; Sukoyan, M.K. Detonation of Explosive Propellant: RDX-Containing Water-Saturated Sand. Russ. J. Chem. Phys. 2014, 8(3): 338-344.
- [13] Papliński, A. An Implementation of the Steepest Descent Method to Evaluation of Equilibrium Composition of Reactive Mixtures Containing Components in Condensed Phases. Cent. Eur. J. Energ. Mater. 2007, 4(1-2): 135-150.
- [14] Mader, C.L. Numerical Modeling of Explosives and Propellants. CRC Press, Boca Raton, 1998, ISBN 978-1-4200-5238-1.
- [15] Papliński, A. Estimation of Thermodynamic Parameters and Chemical Composition of Products of Explosive Transformation of High-energetic Materials. (in Polish) Materiały Wysokoenergetyczne / High Energy Materials, 2009, 1: 48-88.
- [16] Finger, M.: Lee, E.; Helm, F.H.; Hayes, B.; Hornig, H.; McGuire, R.; Kahara, M.; Guidry, M. The Effect of Elemental Composition on the Detonation Behaviour of Explosives. Int. Det. Symp., Proc., 6th, Coronado, CA, 1976, 710-722.
- [17] Hobbs, M.L.; Baer, M.R. Nonideal Thermoequilibrium Calculations Using a Large Product Species Data Base. Shock Waves 1992, 2: 177-187.
- [18] Hobbs, M.L.; Baer, M.R. Calibration of the BKW-EOS and Application to Aluminized Explosives. EUROPYRO 93, Proc., 1993, Strasbourg, pp. 53-59.
- [19] Fried, L.E.; Souers, P.C. BKWC: An Empirical BKW Parameterization Based on Cylinder Test Data. Propellants Explos. Pyrotech. 1996, 21: 215-223.
- [20] Victorov, S.; Heuze, O.; Khasainov, B. An Approach for Generating a Computationally Efficient Equation of State for Condensed Explosives whose Detonation Products undergo Phase Transitions. Int. Det. Symp., Proc., 13th, Norfolk, VA, 2006, IDS 149.
- [21] Papliński, A.; Maranda, A. Investigation of the Influence of Cooling Salts upon the Explosive Performance of Emulsion Explosives. Cent. Eur. J. Energ. Mater. 2015, 12(3): 523-536.
- [22] Maranda, A.; Papliński, A. Investigation of Sodium Azide Performance in Energetic Mixtures. New Trends Res. Energ. Mater., Proc. Semin., 19th, Pardubice, Czech Republic, 2016, 778-783.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54e305e1-04d5-451d-95be-ec8a64cc2712