PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First evidence of arthropod herbivory in calamitalean stems from the Pennsylvanian of Germany

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arthropod borings are commonly described from pteridophyte and gymnosperm wood in the late Palaeozoic, but they are almost unknown from calamitalean stems. In this paper, a new type of boring in calamital- ean stems from two German localities is reported. These are the mine dumps of Plötz near Halle (Saale), Saale Basin, (Wettin Subformation, Latest Pennsylvanian, Gzhelian, Stephanian C) and the Piesberg quarry near Osnabrück, Subvariscan Foreland Basin, (Osnabrück Formation, Middle Pennsylvanian, latest Moscovian, Asturian/ Westphalian D). Most borings were found in marginal parenchyma of the internodes. They run longitudinally through the pith. The borings are preserved as three-dimensional casts that protrude on the surface of considerably compressed pith casts. This unique preservation of the boring casts required special taphonomic conditions, such as rapid burial coupled with different sediment infilling of the borings and the pith cavity, as well as anoxic conditions to prevent decomposition of the non-resistant parenchyma. Most borings are between 3 to 5 mm wide and contain two classes of invertebrate coprolites: the smaller coprolites are sub-spheroidal in shape and measure (37 to 74) x (37 to 63) pm in diameter. The larger coprolites are also sub-spheroidal and range between (88 to'158) x (68 to 123) pm in diameter. The coprolites, the morphology of the borings, as well as the feeding strategy of the arthropods, suggest that the tunnel system was most likely produced by small millipedes (Myriapoda) and probably also visited by oribatid mites.
Rocznik
Strony
219--246
Opis fizyczny
Bibliogr. 166 poz., fot., rys., tab.
Twórcy
  • Technische Universität München, Heinz Maier-Leibnitz Centre and Faculty of Physics E21, Lichtenbergstraße 1, D-85747 Garching, Germany
  • Institut für Geowissenschaften und Geographie, Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 3, D-06120 Halle (Saale), Germany
  • Museum am Schölerberg, Klaus-Strick-Weg 10, D-49082 Osnabrück, Germany
  • Institut für Geowissenschaften und Geographie, Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 3, D-06120 Halle (Saale), Germany
Bibliografia
  • 1. Adami-Rodrigues, K., Iannuzzi, R. & Pinto, I. D., 2004. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils Strata, 51: 106-125.
  • 2. Ash, S. R., 1997. Evidence of arthropod-plant interactions in the Upper Triassic of the southwestern United States. Lethaia, 29: 237-248.
  • 3. Ash, S. R., 2000. Evidence of oribatid mite herbivory in the stem of a Late Triassic tree fern from Arizona. Journal of Paleontology, 74: 1065-1071.
  • 4. Ash, S. R. & Savidge, R. A., 2004. The bark of the Late Triassic Araucarioxylon arizonicum tree from Petrified Forest National Park, Arizona. IAWA Journal, 25: 349-368.
  • 5. Bartenstein, R., Teichmüller, R. & Teichmüller, M., 1971. Die Umwandlung der organischen Substanz im Dach des Bramscher Massivs. Fortschritte in der Geologie von Rheinland und Westfalen, 18: 501-538.
  • 6. Baxendale, R. W., 1979. Plant-bearing coprolites from North American coal balls. Palaeontology, 22: 537-548.
  • 7. Belahmira, A., Hmich, D., Schneider, J. W., Saber, H., Lagnaoui, A. & Hminna, A., 2015. Evidence of insect-plant interaction in the Late Carboniferous Oued Issene Formation, Souss basin (Western High Atlas Mountains, Morocco). Arabian Journal of Earth Sciences - Special Issue ICCI-2015: 6-7.
  • 8. Béthoux, O., Galtier, J. & Nel, A., 2004. Earliest evidence of insect endophytic oviposition. Palaios, 19: 408-413.
  • 9. Beyschlag, F. & Fritsch, K.V., 1899. Das jüngere Steinkohlengebirge in der Provinz Sachsen und den angrenzenden Gebieten. Abhandlungen der Preußischen Geologischen Landesanstalt N.F., 10: 1-263.
  • 10. Bolzon, R. T., Azevedo, I. & Machado, L. G., 2004. Registro da atividade de organismos en um caudle do Permiano do Rio Grande do Sul, Brasil. Arquivos do Museu Nacional, Rio de Janeiro, 62: 513-518.
  • 11. Brauckmann, C. & Herd, K. J., 2002. Insekten-Funde aus dem Westfalium D (Ober-Karbon) des Piesberges bei Osnabrück (Deutschland). Teil 1: Palaeoptera. Osnabrücker Naturwissenschaftliche Mitteilungen, 28: 27-69.
  • 12. Brink, H.-J., 2013. Die Intrusion von Bramsche - ein Irrtum im invertierten Niedersächsischen Becken? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 164: 33-48.
  • 13. Brues, C. T., 1936. Evidences for insect activity preserved in fossil wood. Journal of Palaeontology, 10: 637-643.
  • 14. Cariglino, B., 2018. Patterns of insect-mediated damage in a Permian Glossopteris flora from Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 507: 39-51.
  • 15. Cariglino, B. & Gutiérrez, P. R., 2011. Plant-insect interactions in a Glossopteris flora from the La Golondrina Formation (Guadalupian-Lopingian), Santa Cruz Province, Patagonia, Argentina. Ameghiniana, 48: 103-112.
  • 16. Césari, S. N., Busquets, P., Méndez-Bedia, I., Colombo, F., Limarino, C. O., Cardó, R. & Gallastegui, G., 2012. A late Paleozoic fossil forest from the southern Andes, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334: 131-147.
  • 17. Chen, F., Shi, X., Yu, J., Chi, H., Zhu, J., Li, H. & Huang, C., 2018. Permineralized calamitean axes from the Upper Permian of Xinjiang, Northwest China and its paleoecological implication. Journal of Earth Science, 29: 237-244.
  • 18. Cichan, M. A. & Taylor, T. N., 1982. Wood-borings in Premnoxylon: Plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39: 123-127.
  • 19. Correia, P., Bashforth, A. R., Simùnek, Z., Cleal, C. J., Sá, A. A. & Labandeira, C. C., 2020. The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the Upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage. International Journal of Plant Science, 181(4): 387-418. doi: 10.1086/707105.
  • 20. David, F., 1990. Sedimentologie und Beckenanalyse im Westfal C und D des nordwestdeutschen Oberkarbons. DGMK-Bericht, 384-3: 1-267.
  • 21. DiMichele, W. A. & Falcon-Lang, H. J., 2012. Calamitalean “pith casts” reconsidered. Review of Palaeobotany and Palynology, 173: 1-14.
  • 22. D'Rozario, A., Labandeira, C. C., Guo, W. Y., Yao, Y. F. & Li, C. S., 2011. Spatiotemporal extension of the Euramerican Psaronius component community to the Late Permian of Cathaysia: in situ coprolites in a P. housuoensis stem from Yunnan Province, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 306: 127-133.
  • 23. Dunlop, J. A., Anderson, L. I., Kerp, H. & Hass, H., 2003. Preserved organs of Devonian harvestmen. Nature, 425: 916. doi:10.1038/425916a.
  • 24. Dunlop, J. A. & Garwood, R. J., 2017. Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society B, 373: 20160493.
  • 25. Dunn, M. T., Rothwell, G. W. & Mapes, G., 2003. On Paleozoic plants from marine strata: Trivenia arkansana (Lyginopteridaceae) gen. et sp. nov., a lyginopterid from the Fayetteville Formation (middle Chesterian/Upper Mississippian) of Arkansas, USA. American Journal of Botany, 90: 1239-1252.
  • 26. Edwards, D., Selden, P. A. & Axe, L., 2012. Selective feeding in an Early Devonian terrestrial ecosystem. Palaios, 27: 509-522.
  • 27. Edwards, D., Selden, P. A., Richardson, J. B. & Axe, L., 1995. Coprolites as evidence for plant-animal interaction in Siluro-Devonian terrestrial ecosystems. Nature, 377: 329-331.
  • 28. Endlweber, K., Ruess, L. & Scheu, S., 2009. Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biology & Biochemistry, 41: 1151-1154.
  • 29. Falcon-Lang, H. J., Labandeira, C. C. & Kirk, R., 2015. Herbivorous and detritivorous arthropod trace fossils associated with subhumid vegetation in the Middle Pennsylvanian of Southern Britain. Palaios, 30: 192-206.
  • 30. Farias, R. P., Arruda, E. C. P., Santiago, A. C. P., Almeida-Cortez, J. S., Carvalho-Fernandes, S. P., Costa, L. E. N., Barros, I. C. L & Mehltreter, K., 2018. First record of galls in the tree fern Cyathea phalerata (Cyatheaceae) from a Tropical Rainforest in Brazil. Brazilian Journal of Biology, 78: 799-801.
  • 31. Feng, Z., 2012. Ningxiaites specialis, a new woody gymnosperm from the uppermost Permian of China. Review of Palaeobotany and Palynology, 181: 34-46.
  • 32. Feng, Z., Bertling, M., Noll, R., Ślipiński, A. & Rößler, R., 2019. Beetle borings in wood with host response in early Permian conifers from Germany. Paläontologische Zeitschrift, 93: 409-421.
  • 33. Feng, Z., Schneider, J. W., Labandeira, C. C., Kretzschmar, R. & Rößler, R., 2015a. A specialized feeding habit of Early Permian oribatid mites. Palaeogeography, Palaeoclimatology, Palaeoecology, 417: 121-125.
  • 34. Feng, Z., Wang, J. & Liu, L.-J., 2010. First report of oribatid mite (arthropod) borings and coprolites in Permian woods from the Helan Mountains of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 288: 54-61.
  • 35. Feng, Z., Wang, J., Liu, L.-J. & Rößler, R., 2012. A novel coniferous tree trunk with septate pith from the Guadalupian (Permian) of China: ecological and evolutionary significance. International Journal of Plant Sciences, 173: 835-848.
  • 36. Feng, Z., Wang, J., Rößler, R., Ślipiński, A. & Labandeira, C. C., 2017. Late Permian wood borings reveal an intricate network of ecological relationships. Nature Communications, 8: 556.
  • 37. Feng, Z., Wei, H. B., Wang, C. L., Chen, Y. X., Shen, J. J. & Yang, J. Y., 2015b. Wood decay of Xenoxylon yunnanensis Feng sp. nov. from the Middle Jurassic of Yunnan Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 433: 60-70.
  • 38. Fric, A., 1912. Studie v oboru ceského útvaru permského. Archiv proprírodovédecky vyzkum Cech, 15(2): 1-48.
  • 39. Geinitz, H. B., 1855. Die Versteinerungen der Steinkohlenformation in Sachsen. Wilhelm Engelmann, Leipzig, 61 pp.
  • 40. Goth, K. & Wilde, V., 1992. Fraßspuren in permischen Hölzern aus der Wetterau. Senckenbergiana Lethaea, 72: 1-6.
  • 41. Goto, H. E., 1972. On the structure and function of the mouthparts of the soil-inhabiting collembolan Folsomia candida. Biological Journal of the Linnean Society, 4: 147-168.
  • 42. Habgood, K. S., Hass, H. & Kerp, H., 2004. Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 371-389.
  • 43. Hahn, A. & Kind, E. G., 1971. Eine Interpretation der magnetischen Anomalie von Bramsche. Fortschritte in der Geologie von Rheinland und Westfalen, 18: 423-428.
  • 44. Hamilton, W. D., 1978. Evolution and diversity under bark. In: Mound, L. A. & Waloff, N. (eds), Diversity of Insect Faunas. Symposia of the Royal Entomological Society of London, 9, Blackwell Scientific Publications, Oxford, pp. 154-175.
  • 45. Häntzschel, W., 1975. Trace fossils and problematica. In: Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1, Second Edition. The Geological Society of America, Boulder, and The University of Kansas, Lawrence, pp. W1-W269.
  • 46. Hannibal, J. T., 1984. Pill millipedes from the Coal Age. Bulletin of the Field Museum of Natural History, 55: 12-16.
  • 47. Hannibal, J. T. & Feldmann, R. M., 1981. Systematics and functional morphology of oniscomorph millipedes (Arthropoda: Diplopoda) from the Carboniferous of North America. Journal of Paleontology, 55: 730-746.
  • 48. Hannibal, J. T. & Feldmann, R. M., 1988. Millipeds from late Paleozoic limestones at Hamilton, Kansas. In: Mapes, G. & Mapes, R. (eds), Regional Geology and Paleontology of upper Paleozoic Hamilton Quarry Area in Southeastern Kansas. Kansas Geological Survey Guidebook Series, 6 Kansas Geological Survey, Lawrence, p. 121-131.
  • 49. Harper, C. J., Decombeix, A.-L., Taylor, E. L., Taylor, T. N. & Krings, M., 2017. Fungal decay in Permian Glossopteridalean stem and root wood from Antarctica. IAWA Journal, 38 (1): 29-48.
  • 50. Haug, J. T., Leipner, A., Wappler, T. & Haug, C., 2013. Palaeozoic insect nymphs: new finds from the Piesberg quarry (Upper Carboniferous, Germany). Bulletin of Geosciences, 88: 779-791.
  • 51. Hilton, J., Wang, S.-J., Zhu, W.-Q., Tian, B., Galtier, J. & Wei, A.-H., 2002. Callospermarion ovules from the Early Permian of northern China: palaeofloristic and palaeogeographic significance of callistophytalean seed-ferns in the Cathaysian flora. Review of Palaeobotany and Palynology, 120: 301-314.
  • 52. Holden, H. S., 1910. Note on wounded Myeloxylon. New Phytologist, 9: 253-257.
  • 53. Hopkin, S. P. & Read, H. J., 1992. The Biology of Millipedes. Oxford University Press, Oxford, 246 pp.
  • 54. Iannuzzi, R. & Labandeira, C. C., 2008. The oldest record and early history of insect folivory. Annals of the Entomological Society of America, 101: 79-94.
  • 55. Josten, K.-H., Köwing, K. & Rabitz, A., 1984. Oberkarbon. In: Klassen, H. (ed.), Geologie des Osnabrücker Berglandes. Naturwissenschaftliches Museum, Osnabrück, pp. 7-77.
  • 56. Jones, N. S. & Glover, B. W., 2005. Fluvial sandbody architecture, cyclicity and sequence stratigraphical setting - implications for hydrocarbon reservoirs: the Westphalian C and D of the Osnabrück Ibbenbüren area, northwest Germany. Occasional Publications Series of the Yorkshire Geological Society, 7: 57-74.
  • 57. Jurasky, K. A., 1932. Fraßgänge und Koprolithen eines Nagekäfers in liassischer Steinkohle. Zeitschrift der Deutschen Geologischen Gesellschaft, 84: 656-657.
  • 58. Kellogg, D. W. & Taylor, E. L., 2004. Evidence of oribatid mite detritivory in Antarctica during the Late Paleozoic and Mesozoic. Journal of Paleontology, 78: 1146-1153.
  • 59. Kime, R. D. & Golovatch, S. I., 2000. Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biological Journal of the Linnean Society, 69: 333-349.
  • 60. Köwing, K. & Rabitz, A., 2005. Osnabrücker Karbon. Courier Forschungsinstitut Senckenberg, 254: 255-270.
  • 61. Laaß, M. & Hauschke, N., 2019a. Earliest record of exophytic insect oviposition on plant material from the latest Pennsylvanian (Gzhelian, Stephanian C) of the Saale Basin, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109337.
  • 62. Laaß, M. & Hauschke, N., 2019b. First evidence of borings in calamitean stems and other plant-arthropod interactions from the late Pennsylvanian of the Saale Basin. In: Buchwitz, M., Falk, D., Klein, H., Mertmann, D., Perl, A. & Wings, O. (eds), 3rd International Conference of Continental Ichnology, Halle (Saale), Germany, 23rd-29th September, Abstract Volume & Field Trip Guide. Hallesches Jahrbuch für Geowissenschaften, 46: 43-45.
  • 63. Laaß, M. & Hoff, C., 2014. The earliest evidence of damselfly-like endophytic oviposition in the fossil record. Lethaia, 48: 115-124.
  • 64. Labandeira, C. C., 1998. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26: 329-377.
  • 65. Labandeira, C. C., 2002. The history of associations between plants and animals. In: Herrera, C. M. & Pellmyr, O. (eds), Plant- Animal Interactions: An Evolutionary Approach. Blackwell, London, pp. 26-74, pp. 248-261.
  • 66. Labandeira, C. C., 2006a. The four phases of plant-arthropod associations in deep time. Geologica Acta, 4: 409-438.
  • 67. Labandeira, C. C., 2006b. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64: 53-94.
  • 68. Labandeira, C. C., 2007. The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Science, 14: 259-275.
  • 69. Labandeira, C. C., 2013. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften, 100: 355-364.
  • 70. Labandeira, C. C., 2019. The fossil record of insect mouthparts: Innovation, functional convergence, and associations with other organisms. In: Krenn, H. W. (ed.), Insect Mouthparts: Form, Function, Development and Performance. Springer International Publishing, Cham, pp. 567-671.
  • 71. Labandeira, C. C. & Beall, B. S., 1990. Arthropod terrestriality. In: Mikulic, D. G. (ed.), Arthropod paleobiology. Short Courses in Paleontology, 3: 214-256. Paleontological Society, Knoxville, p. 214-256.
  • 72. Labandeira, C. C. & Currano, E. D., 2013. The fossil record of plant-insect dynamics. Annual Review of Earth and Planetary Sciences, 41: 287-311.
  • 73. Labandeira, C. C., Kustatscher, E. & Wappler, T., 2016. Floral assemblages and patterns of insect herbivory during the Permian to Triassic of Northeastern Italy. PLoS One, 11(11), e0165205. [49 pp.]. doi:10.1371/journal.pone.0165205.
  • 74. Labandeira, C. C. & Phillips, T. L., 1996a. A Carboniferous insect gall: insight into early ecologic history of Holometabola. Proceedings of the National Academy of Sciences, 93: 8470-8474.
  • 75. Labandeira, C. C. & Phillips, T. L., 1996b. Insect fluid-feeding on Upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing-and-sucking functional feeding group. Annals of the Entomological Society of America, 89: 157-183.
  • 76. Labandeira, C. C. & Phillips, T. L., 2002. Stem borings and pettiole galls from Pennsylvanian tree ferns of Illinois, USA: Implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica Abteilung A, 264: 1-84.
  • 77. Labandeira, C. C., Phillips, T. L. & Norton, R. A., 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12: 319-353
  • 78. Labandeira, C. C., Tremblay, S. L., Bartowski, E. E. & Hernick, L. V., 2013. Middle Devonian liverwort herbivory and antiherbivore defence. New Phytologist, 202: 247-258.
  • 79. Labandeira, C. C., Wilf, P. & Johnson, K. R., 2007. Guide to the Insect (and Other) Damage Types on Compressed Plant Fossils Version 3.0. Smithsonian Institute, Washington, D.C., 25 pp.
  • 80. Leipner, A. & Chellouche, P., 2019. A newly discovered lake deposit of Pennsylvanian age (upper Moscovian, Wesphalian D) from the Piesberg Quarry, Osnabrück, Northwestern Germany. In: Hartenfels, S., Herbig, H.-G., Amler, M. R. W. & Aretz, M. (eds), Abstracts, 19th International Congress on the Carboniferous and Permian, Cologne, July 29- August 2, 2019. Kölner Forum Geologie und Paläontologie, 23: 197-198.
  • 81. Lesnikowska, A. D., 1990. Evidence of herbivory in tree-fern petioles from the Calhoun Coal (Upper Pennsylvanian) of Illinois. Palaios, 5: 76-80.
  • 82. Linck, O., 1949. Fossile Bohrgänge (Anobichnium simile n. g. n. sp.) an einem Keuperholz. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, B90: 180-185.
  • 83. Lucas, S. G., Minter, N. J. & Hunt, A. P., 2010. Re-evaluation of alleged bees' nests from the Upper Triassic of Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology, 286: 194-201.
  • 84. Marchetti, L., Forte, G., Bernardi, M., Wappler, T., Hartkopf-Fröder, C., Krainer, K. & Kustatscher, E., 2015. Reconstruction of a late Cisuralian (Early Permian) floodplain lake environment: palaeontology and sedimentology of the Tregiovo Basin (Trentino-Alto Adige, Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 180-200.
  • 85. McLoughlin, S., 1992. Late Permian plant megafossils from the Bowen Basin, Queensland, Australia: part 1. Palaeontographica Abteilung B, 228: 105-149.
  • 86. Mencl, V, Holecek, J., Rößler, R. & Sakala, J., 2013. First anatomical description of silicified calamitalean stems from the upper Carboniferous of the Bohemian Massif (Nová Paka and Rakovník areas, Czech Republic). Review of Palaeobotany and Palynology, 197: 70-77.
  • 87. Méndez-Bedia, I., Gallastegui, G., Busquets, P., Césari, S. N., Limarino, C. O., Prats, E., Cardó, R. & Colombo, F., 2020. Pedogenic and subaerial exposure microfabrics in a late Carboniferous-early Permian carbonate-volcanic lacustrine-palustrine system (San Ignacio Formation, Frontal Cordillera, Argentina). Anden Geology, 47(2). doi: http://dx.doi.org/10.5027/andgeoV47n2-3214.
  • 88. Miller, P. F., 1974. Competition between Ophyiulus pilosus (Newport) and Lulus scandinavius Latzed. Symposia of the Zoological Society of London, 32: 553-574.
  • 89. Müller, A. H., 1982. Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freiberger Forschungsheft, 366: 7-27.
  • 90. Muñoz, Y. A., 2006. The Thermal History of the Western Lower Saxony Basin, Germany. PhD Thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, 153 pp.
  • 91. Naugolnykh, S. V. & Ponomarenko, A. G., 2010. Possible traces of feeding by beetles in coniferophyte wood from the Kazanian of the Kama River Basin. Paleontological Journal, 44: 468-474.
  • 92. Nel, A., Roques, P., Nel, P., Prokin, A. A., Bourgoin, T., Prokop, J., Szwedo, J., Azar, D., Desutter-Grandcolas, L., Wappler, T., Garrouste, R., Coty, D., Huang, D., Engel, M. S. & Kirejtshuk, A. G., 2013. The earliest known holometabolous insects. Nature, 503(7475): 257-261.
  • 93. Neregato, R., Rößler, R., Iannuzzi, R., Noll, R. & Rohn, R., 2017. New petrified calamitaleans from the Permian of the Parnaíba Basin, central-north Brazil, part II, and phytogeographic implications for late Paleozoic floras. Review of Palaeobotany and Palynology, 237: 37-61.
  • 94. O'Connor, F. B., 1967. The Enchytraeidae. In: Burgess, A. & Raw, F. (eds), Soil Biology. Academic Press, New York, pp. 213-256.
  • 95. Pant, D. D. & Singh, V. K., 1987. Xylotomy of some woods from Raniganj Formation (Permian), Raniganj Coalfield, India. Palaeontographica Abteilung B, 203: 1-82.
  • 96. Paulusse, J. H. M. & Jeanson, C. Y., 1977. Structuration du sol par les diplopodes: étude expérimentale et microscopique. Ecological Bulletin, 25: 484-488.
  • 97. Pinheiro, E. R. S., Iannuzzi, R. & Tybusch, G. P., 2012. Specificity of leaf damage in the Permian “Glossopteris Flora”: A quantitative approach. Review of Palaeobotany and Palynology, 174: 113-121.
  • 98. Pinheiro, E. R. S., Gallego, J., Iannuzzi, R. & Cuneo, R., 2015. First report of feeding traces in Permian Botrychiopsis leaves from Western Gondwana. Palaios, 30: 613-619.
  • 99. Racheboeuf, P. R., Hannibal, J. T. & Vannier, J., 2004. A new species of the diplopod Amynilyspes (Oniscomorpha) from the Stephanian Lagerstätte of Montceau-les-Mines, France. Journal of Paleontology, 78: 221-229.
  • 100. Reich, H., 1948. Geophysikalische Karte von Nordwestdeutschland 1:500000, Blatt 1: Magnetik, Blatt 2: Gravimetrik. Reichsamt für Bodenforschung, Hannover.
  • 101. Reich, H., 1949. Die Geophysikalische Erforschung Nordwestdeutschlands 1932-1947, Ein Überblick. Erdöl und Tektonik in Nordwestdeutschland, pp. 21-28.
  • 102. Rex, G. M., 1986. The preservation and paleoecology of the Lower Carboniferous silicified plant deposits at Esnost, near Autun, France. Geobios, 19: 773-788.
  • 103. Rex, G. M. & Galtier, J., 1986. Sur l'évidence d'interactions animal végétal dans le Caronifére inférieur français. Comptes Rendus de la Academie des Sciences, Paris, (11) 303: 1623-1626.
  • 104. Rolfe, W. D. I., 1985. Aspects of the Carboniferous terrestrial arthropod community. In: 9th Congress International Stratigraphy and Geology Carboniferous, Champaign-Urbana USA, 5. Southern Illinois University Press, Carbondale, Il, pp. 303-316.
  • 105. Ross, A. J., Edgecombe, G. D., Clark, N. D. L., Bennett, C. E., Carrio, V., Contreras-Izquierdo, R. & Crighton, B., 2018. A new terrestrial millipede fauna of earliest Carboniferous (Tournaisian) age from southeastern Scotland helps fill ‘Romer's Gap'. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 108: 99-110.
  • 106. Rothwell, G. W. & Scott, A. C., 1983. Coprolites within the marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 41: 227-232.
  • 107. Rößler, R., 2000. The late Paleozoic tree fern Psaronius - an ecosystem unto itself. Review of Palaeobotany and Palynology, 108: 55-74.
  • 108. Rößler, R., 2001. Studien zur Lebensweise und Fossilisation des Baumfarnes Psaronius im “Versteinerten Wald“ von Chemnitz (Unterperm, Deutschland). Hallesches Jahrbuch für Geowissenschaften, B 23: 9-33.
  • 109. Rößler, R., 2006. Two remarkable Permian petrified forests: correlation, comparison and significance. In: Lucas, S. G., Cassinis, G. & Schneider, J. W. (eds), Non-marine Permian Biostratigraphy and Biochronology. The Geological Society of London Special Publication, 265: 39-63.
  • 110. Rößler, R., Feng, Z. & Noll, R., 2012a. The largest calamite and its growth architecture - Arthropitys bistriata from the Early Permian Petrified Forest of Chemnitz. Review of Palaeobotany and Palynology, 185: 64-78.
  • 111. Rößler, R. & Fiedler, G., 1996. Fraßspuren am permischen Gymnospermen-Kieselhölzern - Lebenszeichen von Arthropoden im Oberrotliegend von Chemnitz. Veröffentlichungen des Museums für Naturkunde Chemnitz, 19: 27-34.
  • 112. Rößler, R., Kretzschmar, R., Feng, Z. & Noll, R., 2014. Fraßgalerien von Mikroarthropoden in Koniferenhölzern des frühen Perms von Crock, Thüringen. Veröffentlichungen des Museums für Naturkunde Chemnitz, 37: 55-66.
  • 113. Rößler, R. & Noll, R., 2006. Sphenopsids of the Permian (I): the largest known anatomically preserved calamite, an exceptional find from the petrified forest of Chemnitz, Germany. Review of Palaeobotany and Palynology, 140: 145-162.
  • 114. Rößler, R. & Noll, R., 2010. Anatomy and branching of Arthropitys bistriata (Cotta) Goeppert: new observations from the Permian petrified forest of Chemnitz, Germany. International Journal of Coal Geology, 83: 103-124.
  • 115. Rößler, R., Noll, R., Annacker, V. & Niemirowska, S., 2020. Interrelatedness of biota revealed in fossil trees from the Permian fossil forest of Northern Tocantins, Central- North Brazil. In: Iannuzzi R., Rößler R. & Kunzmann L. (eds), Brazilian Paleofloras. Springer, Cham, pp. 1-45. doi.org/10.1007/978-3-319-90913-4_11-1.
  • 116. Rößler, R., Zierold, T., Feng, Z., Kretzschmar, R., Merbitz, M., Annacker, V. & Schneider, J. W., 2012b. A snapshot of an Early Permian ecosystem preserved by explosive volcanism: new results from the Petrified Forest of Chemnitz, Germany. Palaios, 27: 813-843.
  • 117. Sagasti, A. J., García Massini, J. L., Escapa, I. H. & Guido, D. M., 2019. Multitrophic interactions in a geothermal setting: Arthropod borings, actinomycetes, fungi and fungal-like microorganisms in a decomposing conifer wood from the Jurassic of Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 31-44.
  • 118. Schachat, S. R., Labandeira, C. C. & Chaney, D. S., 2015. Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: opportunism in a balanced component community. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 830-847.
  • 119. Schachat, S. R., Labandeira, C. C., Gordon, J., Chaney, D. S., Levi, S., Halthore, M. S. & Alvarez, J., 2014. Plant-insect interactions from the Early Permian (Kungurian) Colwell Creek Pond, North-Central Texas: the early spread of herbivory in riparian environments. International Journal of Plant Science, 175: 855-890.
  • 120. Schneider, J. W. & Gebhardt, U., 1993. Litho- und Biofaziesmuster in intra- und extramontanen Senken des Rotliegend (Perm, Nord- und Ostdeutschland). Geologisches Jahrbuch, A 131: 57-98.
  • 121. Schneider, J. W., Goretzki, J. & Rößler, R., 2005a. Biostratigraphisch relevante nichtmarine Tiergruppen im Karbon der variscischen Vorsenke und der Innensenken. In: Wrede, V. (ed.), Stratigraphie von Deutschland, Oberkarbon. Courier Forschungsinstitut Senckenberg, 254: 103-118.
  • 122. Schneider, J. W., Lucas, S. G., Scholze, F., Voigt, S., Marchetti, L., Klein, H., Oplustil, S., Werneburg, R., Golubev, V. K., Barrick, J. E., Nemyrovska, T., Ronchi, A., Day, M. O., Silantiev, V. V., Rößler, R., Saber, H., Linnemann, U., Zharinova, V. & Shen, S. Z., 2020. Late Paleozoic-early Mesozoic continental biostratigraphy - Links to the Standard Global Chronostratigraphic Scale. Paleoworld, 531: 186-238.
  • 123. Schneider, J. W. & Romer, R. L., 2010. The late Variscan molasses (late Carboniferous to late Permian) of the Saxo-Thuringian Zone. In: Linnemann, U. & Romer, R. L. (eds), Pre-Mesozoic Geology of Saxo-Thuringia - From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp. 323-346.
  • 124. Schneider, J. W., Rößler, R., Gaitzsch, B. G., Gebhardt, U. & Kampe, A., 2005b. Saale-Senke. In: Wrede, V. (ed.), Stratigraphie von Deutschland. Oberkarbon. Courier Forschungsinstitut Senckenberg, 254: 419-440.
  • 125. Schneider, J. W. & Scholze, F., 2018. Late Pennsylvanian-Early Triassic conchostracan biostratigraphy: a preliminary approach. In: Lucas, S. G. & Shen, S. Z. (eds), The Permian Timescale. Geological Society London, Special Publications, 450: 365-386.
  • 126. Schneider, J. W. & Werneburg, R., 2012. Biostratigraphie des Rotliegend mit Insekten und Amphibien. In: Lützner, H. & Kowalczyk, G. (eds), Deutsche Stratigraphische Kommission, Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 61: 110-142.
  • 127. Schultka, S., 1988. Beiträge zur Paläontologie der terrestren Räume unter besonderer Berücksichtigung des Ibbenbüren- Osnabrücker Karbons. Unpublished Thesis, Westfälische Wilhelm-Universität Münster, Selbstverlag, Münster, 149 pp.
  • 128. Schultka, S., 2000. Zur Palökologie der Euproopiden im Nordwestdeutschen Oberkarbon. Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe, 3: 87-98.
  • 129. Schwab, M., 1962. Über die Inkohlung der Steinkohlen im Nördlichen Saaletrog bei Halle. Geologie, 11: 917-942.
  • 130. Scott, A. C., 1977. Coprolites containing plant material from the Carboniferous of Britain. Palaeontology, 20: 59-68.
  • 131. Scott, A. C., 1992. Trace fossils of plant-arthropod interactions. In: Maples, C. G. & West, R. R. (eds), Trace Fossils. Short Courses in Paleontology. Paleontological Society, Univ. Tennessee, Knoxville, Tennessee, U.S.A., pp. 197-223.
  • 132. Seward, A. C., 1898. Fossil Plants. Volume 1. Cambridge University Press, Cambridge, 452 pp.
  • 133. Seyfullah, L. J., Hilton, J., Wang, S.-J. & Galtier, J., 2009. Anatomically preserved pteridosperm stems and rachises from Permian floras of China. International Journal of Plant Sciences, 170: 814-828.
  • 134. Shear, W. A. & Kukalová-Peck, J., 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology, 68: 1807-1834.
  • 135. Shear, W. A. & Selden, P. A., 2001. Rustling in the undergrowth: animals in early terrestrial ecosystems. In: Gensel, P. G. & Edwards, D. (eds), Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York, pp. 29-51.
  • 136. Shelley, R. M., 1999. Centipedes and millipedes with emphasis on North American fauna. The Kansas School Naturalist, 45: 1-16.
  • 137. Slater, B. J., 2013. Cryptic diversity of a Glossopteris Forest: The Permian Prince Charles Charles Mountain Floras, Antarctica. PhD Thesis, University of Birmingham, 304 pp.
  • 138. Slater, B. J., McLoughlin, S. & Hilton, J., 2012. Animal-plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 363-364: 109-126.
  • 139. Stewart, W. N., 1983. Palaeobotany and the Evolution of Plants. Cambridge University Press, Cambridge, 405 pp.
  • 140. Stidd, B. M. & Phillips, T. L., 1982. Johnhallia lacunosa gen.et sp. n.: a new pteridosperm from the Middle Pennsylvanian of Indiana. Journal of Paleontology, 56: 1093-1102.
  • 141. Stopes, M. C., 1907. A note on wounded Calamites. Annals of Botany, 21: 277-280.
  • 142. Strullu-Derrien, C., McLoughlin, S., Philippe, M., Mørk, A. & Strullu, D. G., 2012. Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeography, Palaeoclimatology, Palaeoecology, 348-349: 45-58.
  • 143. Tapanila, L. & Roberts, E. M., 2012. The earliest evidence of holometabolan insect pupation in conifer wood. PLoS ONE, 7(2): e31668. doi:10.1371/journal.pone.0031668.
  • 144. Taylor, T. N. & Scott, A. C., 1983. Interactions of plants and animals during the Carboniferous. BioScience, 33: 488-493.
  • 145. Taylor, T. N., Taylor, E. L. & Krings, M., 2009. Palaeobotany. The Biology and Evolution of Fossil Plants. Second Edition. Academic Press, London, 1230 pp.
  • 146. Teichmüller, M. & Teichmüller, R., 1951. Inkohlungsfragen im Osnabrücker Raum. Neues Jahrbuch Geologie Paläontologie, Monatshefte, 1951: 69-85.
  • 147. Trewin, N. H. & Kerp, H., 2017. The Rhynie and Windyfield cherts, Early Devonian, Rhynie, Scotland. In: Fraser, N. C. & Sues, H.-D. (eds), Terrestrial Conservation Lagerstätten - Windows into the Evolution of Life on Land. Dunedin Academic Press Ltd., Edinburgh, pp. 1-38.
  • 148. Trümper, S., Gaitzsch, B., Schneider, J. W., Ehling, B.-C., Kleeberg, R. & Rößler, R., 2019a. Late Paleozoic red beds elucidate architecture and evolution of a fluvial system carrying large woody debris in the seasonal tropics of central Pangaea. Sedimentology, 67: 1973-2012.
  • 149. Trümper, S., Gaitzsch, B., Schneider, J. W., Ehling, B.-C. & Rößler, R., 2019b. Die versteinerten Bäume des Kyffhäusers (Oberkarbon, Thüringen): Forschungshistorie, Ablagerungsraum und Alter. Veröffentlichungen Museum für Naturkunde Chemnitz, 42: 5-44.
  • 150. Walker, M. V., 1938. Evidence of Triassic insects in the Petrified Forest National Monument. Arizona. Proceedings of the United States Natural Museum, 85: 137-141.
  • 151. Wallwork, J. A., 1976a. The forest soil fauna. In: Wallwork, J. A. (ed.), The Distribution and Diversity of Soil Fauna. Academic Press, London, pp. 200-242.
  • 152. Wallwork, J. A., 1976b. Fauna of decaying wood, rocks and trees. In: Wallwork, J. A. (ed.), The Distribution and Diversity of Soil Fauna. Academic Press, London, pp. 243-273.
  • 153. Wan, M., Yang, W., Liu, L. & Wang, J., 2016. Plant-arthropod and plant-fungus interactions in late Permian gymnospermous woods from the Bogda Mountains, Xinjiang, northwestern China. Review of Palaeobotany and Palynology, 235: 120-128.
  • 154. Wang, S. J., Hilton, J., Galtier, J. & Tian, B., 2006. A large anatomically preserved calamitean stem from the Upper Permian of southwest China and its implications for calamitean development and functional anatomy. Plant Systematics and Evolution, 261: 229-244.
  • 155. Weaver, L., McLoughlin, S. & Drinnan, A. N., 1997. Fossil woods from the Upper Permian Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica. AGSO Journal of Australian Geology and Geophysics, 16: 655-676.
  • 156. Wehner, K., Heethoff, M. & Brückner, A., 2018. Seasonal fluctuation of oribatid mite communities in forest microhabitats. PeerJ, 6, e4863.
  • 157. Wei, H.-B., Gou, X.-D., Yang, J.-Y. & Feng, Z., 2019. Fungiplant-arthropods interactions in a new conifer wood from the uppermost Permian of China reveal complex ecological relationships and trophic networks. Review of Palaeobotany and Palynology, 271: 104100. doi: https://doi.org/10.1016/j. revpalbo.2019.07.005.
  • 158. Williamson, W. C., 1871. On the organization of the fossil plants of the coal-measures. Pt. 1. Calamites. Philosophical Transactions of the Royal Society of London, 161: 477-510.
  • 159. Wilson, H. M. & Anderson, L. I., 2004. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. Journal of Paleontology, 78: 169-184.
  • 160. Wilson, H. M., Daeschler, E. B. & Desbiens, S., 2005. New flatbacked archipolypodan millipedes from the Upper Devonian of North America. Journal of Paleontology, 79: 738-744.
  • 161. Wolterbeek, T., 2014. Eilegging door een insect uit het Carboon van de Piesberg. Grondboor & Hamer, 2014(3): 50-53.
  • 162. Wrede, V., Drozdzewski, G., Juch, D., Leipner, A. & Sowiak, M., 2019. Field Trip A2: The Pennsylvanian of the Ruhr Basin and Osnabrück region, western Germany - facies, stratigraphy and tectonics of a paralic foreland basin of the Variscides. In: Herbig, H.-G., Aretz, M., Amler, M. R. W. & Hartenfels, S. (eds), Field Guides, 19th International Congress on the Carboniferous and Permian, Cologne, July 29 - August 2, 2019. Kölner Forum Geologie und Paläontologie, 24: 43-80.
  • 163. Wüstefeld, P., Hilse, U., Lüders, V., Wemmer, K., Köhrer, B. & Hilgers, C., 2017. Kilometer-scale-fault-related thermal anomalies in tight gas sandstones. Marine and Petroleum Geology, 86: 288-303.
  • 164. Xu, Q., Jin, J. & Labandeira, C. C., 2018. Williamson Drive: herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counterdefenses. Review of Palaeobotany and Palynology, 251: 28-72.
  • 165. Zavada, M. S. & Mentis, M. T., 1992. Plant-animal interaction: the effect of Permian megaherbivores on the glossopterid flora. American Midland Naturalist, 127: 1-12.
  • 166. Zhou, Z. Y. & Zhang, B. L., 1989. A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 59: 133-143.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54e19bef-0a87-4cbc-a6eb-98ec2391bf8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.