PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Homotopy perturbation method with trefftz functions and simcenter star-ccm+ used for the analysis of flow boiling heat transfer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents experimental and numerical studies of heat transfer during cooling fluid flow in a group of five minichannels 1 mm deep. The main purpose was to determine the heat transfer coefficient on the contact surface between the fluid and the heated wall of the selected minichannel at subcooled boiling. The temperature distribution on the outer surface of the heated plate was measured by means of an infrared camera. Thermal and flow parameters were monitored by an appropriate data-acquisition system. The test section was placed horizontally with fluid flowing above the heated wall. The HFE-649, HFE-7100 and HFE-7200 working fluids were examined in the experiments. Simcenter STAR-CCM+ software was used for numerical analysis of heat transfer in the test section. Furthermore, a simplified two-dimensional (2D) model was proposed that designates subcooled boiling heat transfer during fluid flow in a central minichannel. The heat-transfer process in the heated plate and the working fluid was described using indicated partial differential equations with appropriate boundary conditions. The solution to the proposed system of equations led to the solving of two more inverse Cauchy-type problems. The classical Trefftz method (TM) and the homotopy perturbation method (HPM) combined with the TM allowed for obtaining temperature distributions in the heater and the fluid and consequently, the heat transfer coefficient at the heater–fluid interface from the Robin boundary condition. Comparison of the results from numerical simulation due to Simcenter STAR-CCM+ showed similar temperature distributions at the heated surface. The calculated heat transfer coefficients, by HPM and Simcenter STAR-CCM+, were validated using the 1D approach. Furthermore, the results from simulations in Simcenter STAR-CCM+ in the form of local temperatures of the heater were confronted with experimental data for comparison. Similar results were achieved.
Rocznik
Strony
233--243
Opis fizyczny
Bibliogr.38 poz., rys., tab., wykr.
Twórcy
  • Faculty of Management and Computer Modelling, Kielce University of Technology, Al.Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Management and Computer Modelling, Kielce University of Technology, Al.Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Al.Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Tibirica CB, Ribatski G. Flow boiling in micro-scale channels - Synthesized literature review. International Journal of Refrigeration. 2013;36(2): 301-324. https://doi.org/10.1016/j.ijrefrig.2012.11.019
  • 2. Da Silva PF, de Oliveira JD, Copetti JB, Macagnan MH, Cardoso EM. Flow boiling pressure drop and flow patterns of R-600a in a mul-tiport minichannels. International Journal of Refrigeration. 2023;148: 13-24. http://doi.org/10.1016/j.ijrefrig.2023.01.001
  • 3. Wang D, Wang D, Hong F, Xu J, Zhanga C. Experimental study on flow boiling characteristics of R-1233zd(E) of counter-flow intercon-nected minichannel heat sink. International Journal of Heat and Mass Transfer. 2023;215(124481):1-19. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124481
  • 4. Rafałko G, Grzybowski H, Dzienis P, Zaborowska I, Mosdorf R, Litak G. Recurrence analysis of phase distribution changes during boiling flow in parallel minichannels. The European Physical Journal Special Topics. 2023;232: 201-207. https://doi.org/10.1140/epjs/s11734-022-00741-0
  • 5. Saghir MZ, Alhajaj Z. Optimum multi-mini-channels height for heat enhancement under forced convection condition. Energies. 2021;14(7020):1-13. https://doi.org/10.3390/en14217020
  • 6. Piasecka M, Piasecki A, Dadas N. Experimental Study and CFD Modeling of Fluid Flow and Heat Transfer Characteristics in a Mini-channel Heat Sink Using Simcenter STAR-CCM+ Software. Energies. 2022;15(536):1-20. https://doi.org/10.3390/en15020536
  • 7. Piasecka M, Strąk K. Influence of the Surface Enhancement on the Heat Transfer in a Minichannel. Heat Transfer Engineering. 2019;40(13-14): 1162-1175. https://doi.org/10.1080/01457632.2018.1457264
  • 8. Piasecka M, Maciejewska B, Łabędzki P. Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software. Energies. 2020;13(6647): 1-25. https://doi.org/10.3390/en13246647
  • 9. Hadamard J. Sur les Problèmes aux Dérivées Partielles et Leur Signification Physique. Princet. Univ. Bull. 1902;13: 49–52.
  • 10. Kurpisz K, Nowak AJ. Inverse Thermal Problems. Southampton, UK and Boston: Computational Mechanics Publications; 1995.
  • 11. Bakushinskii A, Goncharsky A. Ill-Posed Problems:Theory and Applications. Dordrecht: Kluwer; 1995.
  • 12. Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. Numerical Methods for the Solution of Ill-Posed Problems. London: Kluwer Academic; 1990.
  • 13. Lesnic D. Inverse Problems with Applications in Science and Engineering. New York: Chapman and Hall/CRC; 2021. https://doi.org/10.1201/9780429400629
  • 14. Belgacem Ben F, El Fekih H. On Cauchy’s Problem: I. A Variational Steklov-Poincar´e Theory. Inverse Problems. 2005;21:1915–1936. https://doi.org/10.1088/0266-5611/21/6/008
  • 15. Ciałkowski MJ, Frąckowiak A, Grysa K. Solution of a stationary inverse heat conduction problems by means of Trefftz non-continuous method. International Journal of Heat and Mass Trans-fer. 2007;50: 2170-2181. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.030
  • 16. Maciąg A, Grysa K. Temperature dependent thermal conductivity determination and source identification for nonlinear heat conduction by means of the Trefftz and Homotopy perturbation methods. Inter-national Journal of Heat and Mass Transfer. 2016;100: 627-633. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.103
  • 17. Ciałkowski MJ, Grysa K. A sequential and global method of solving an inverse problem of heat conduction equation. Journal of Theoreti-cal and Applied Mechanics. 2010;48(1): 111-134.
  • 18. Liu CS. A modified collocation Trefftz method for the inverse Cauchy problem of Laplace equation. Engineering Analysis with Boundary Elements. 2008;32(9):778-785. https://doi.org/10.1016/j.enganabound.2007.12.002
  • 19. Qin QH. The Trefftz Finite and Boundary Element Method. South-ampton: WIT Press; 2000.
  • 20. Grysa K, Maciąg A. Homotopy perturbation method and Trefftz functions in the source function identification. Singapore: AP-COM&ISCM, 2013 Dec 11-14.
  • 21. Hożejowska S. Homotopy perturbation method combined with Trefftz method in numerical identification of liquid temperature in flow boil-ing. Journal of Theoretical and Applied Mechanics. 2015;53(4): 969-980. https://doi.org/10.15632/jtam-pl.53.4.969
  • 22. Maciąg A, Pawińska A. The solution of nonlinear direct and inverse problems for beam by means of the Trefftz functions. European Journal of Mechanics - A/Solids. 2022;92:1-6. https://doi.org/10.1016/j.euromechsol.2021.104476
  • 23. Trefftz E. Ein Gegenstück zum Ritzschen Verfahren. 2 Int. Kongress für Technische Mechanik. 1926: 131-137.
  • 24. Hożejowska S, Hożejowski L, Piasecka M. Radial basis functions in mathematical modelling of flow boiling in minichannels. EPJ Web of Conferences. 2017;143(02037):1-5.
  • 25. Zhao X, Li JM, Riffat SB. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering. 2008;28:1942-1951. https://doi.org/10.1016/j.applthermaleng.2007.12.006
  • 26. Zibart A, Kenig EY. Numerical investigation of conjugate heat trans-fer in a pillow-plate heat exchanger. International Journal of Heat and Mass Transfer. 2021;165(120567):1-17. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120567
  • 27. Gorobets V, Trokhaniak V, Bohdan Y, Antypov I. Numerical Modeling of Heat Transfer and Hydrodynamics in Compact Shifted Arrange-ment Small Diameter Tube Bundles. Journal of Applied and Compu-tational Mechanics. 2021;7(1):292-301. https://doi.org/10.22055/jacm.2020.31007.1855
  • 28. Lee W-J, Jeong JH. Development of a numerical analysis model for a multi-port minichannel heat exchanger considering a two-phase flow distribution in the header. Part I: Numerical modelling. Interna-tional Journal of Heat and Mass Transfer. 2019;138: 1264-128 https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.100
  • 29. Adam A, Han D, He W, Chen J. Numerical analysis of cross-flow plate type indirect evaporative cooler: Modeling and parametric anal-ysis. Applied Thermal Engineering. 2021;185(116379):1-13. https://doi.org/10.1016/j.applthermaleng.2020.116379
  • 30. Ayli E, Bayer O, Aradag S. Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes. International Journal of Thermal Sciences. 2016;109: 279-290. https://doi.org/10.1016/j.ijthermalsci.2016.06.021
  • 31. Mu Y-T, Chen L, He Y-L, Tao W-Q. Numerical study on temperature uniformity in a novel mini-channel heat sink with different flow field configurations. International Journal of Heat and Mass Transfer. 2015;85: 147-157 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.093
  • 32. https://www.3m.com/3M/en_US/p/d/b5005005025/
  • 33. https://www.3m.com/3M/en_US/p/d/b40044867/
  • 34. https://www.3m.com/3M/en_US/p/d/b40045142/
  • 35. https://www.3m.com/
  • 36. Piasecka M, Hożejowska S, Maciejewska B, Pawińska A. Time-dependent heat transfer calculations with Trefftz and Picard methods for flow boiling in a mini-channel heat sink. Energies. 2021;14: 1-24. https://doi.org/10.3390/en14071832
  • 37. Biazar J, Ghazvini H. Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis: Real World Applications. 2009;10: 2633-2640. https://doi.org/10.1016/j.nonrwa.2008.07.002
  • 38. Piasecka M, Strąk K. Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orienta-tions. Energies. 2021;14(4891):1-29. https://doi.org/10.3390/en14164891
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54e0c8fe-c80a-4d58-a8ba-6cc68c09dba5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.