PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on gravity field modelling and gravimetry in Poland in 2015–2018

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Activities of the Polish research gSDroups concerning gravity field modelling and gravimetry in a period of 2015–2018 are reviewed and summarised in this paper. The summary contains the results of research on the evaluation of GOCE-based global geopotential models (GGMs) in Poland and geoid modelling. Extensive research activities are observed in the field of absolute gravity surveys, in particular for the maintenance of national gravity control in Poland, Sweden, Denmark, the Republic of Ireland and in Northern Ireland as well as for geodynamics with special emphasis on metrological aspects in absolute gravimetry. Long term gravity variations were monitored in two gravimetric laboratories: the Borowa Gora Geodetic-Geophysical Observatory, and Jozefoslaw Astrogeodetic Observatory with the use of quasi-regular absolute gravity measurements as well as tidal gravimeter records. Gravity series obtained were analysed considering both local and global hydrology effects. Temporal variations of the gravity field were investigated using data from GRACE satellite mission as well as SLR data. Estimated variations of physical heights indicato the need for kinematic realization of reference surface for heights. Also seasonal variability of the atmospheric and water budgets in Poland was a subject of investigation in terms of total water storage using the GLDAS data. The use of repeatable absolute gravity data for calibration/validation of temporal mass variations derived from satellite gravity missions was discussed. Contribution of gravimetric records to seismic studies was investigated. The bibliography of the related works is given in references.
Rocznik
Strony
31--63
Opis fizyczny
Bibligr. 66 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics 27 Kaczmarskiego St., 02-679 Warsaw, Poland
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics 27 Kaczmarskiego St., 02-679 Warsaw, Poland
  • Warsaw University of Technology, Department of Geodesy and Geodetic Astronomy 1 Pl. Politechniki, 00-661 Warsaw, Poland
Bibliografia
  • [1] Alothman, A., Godah,W. and Elsaka, B. (2015). Gravity field anomalies from recent GOCE satellite-based geopotential models and terrestrial gravity data: A comparative study over Saudi Arabia. Arab. J. Geosci., 9(5), 1–12. DOI: 10.1007/s12517-016-2393-y.
  • [2] Becker, J., Sandwell, D.T., Smith, W.H.F., Braud J., et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32(4), 355–371. DOI: 0.1080/01490410903297766.
  • [3] Barlik, M., Olszak, T., Pachuta, A., Walo, J., Próchniewicz, D., Szpunar, R. and Pieniak, M. (2018). Gravity changes at Polish fundamental gravity control network. In: GGHS2018 “Gravity, Geoid and Height Systems 2” Symposium, 2nd joint meeting of the International Gravity Field Sernice and Commission 2 of the IAG. Copenhagen, 17–21 September 2018.
  • [4] Bernatowicz, A. and Łyszkowicz, A. (2017). Present state of lake studies from satellite altimetry – a case study in Poland. In 10th International Conference “Environmental Engineering”, Vilnius, 27–28 April 2017. eISSN 2029-7092, pp. 1–8. DOI: 10.3846/enviro. 2017.164.
  • [5] Birylo, M., Nastula, J. and Kuczynska-Siehien J. (2015). The creation of flood risks model using a combination of satellite and meteorological models – the first step. Acta Geodyn. Geomater., 12(2), 151–156. DOI: 10.13168/AGG.2015.0018.
  • [6] Birylo, M. (2017). Uncertainty in estimated water cycle determined with atmospheric budget, water budżet and total water storage. European Water, 59, 177–184.
  • [7] Birylo, M., Rzepecka, Z., Kuczynska-Siehien, J. and Nastula J. (2017a). Analysis of water budget prediction accuracy using ARIMA models. Water Science and Technology: Water Supply, 18(3), 819–830. DOI: 10.2166/ws.2017.156.
  • [8] Birylo, M., Rzepecka, Z. and Nastula J. (2016). Assessment of resultant groundwater calculated on the basis of GRACE and GLDAS models. In: 16th International Multidisciplinary Scientific GeoConference SGEM, 2(2), pp. 125–132. DOI: 10.5593/SGEM2016/B22/S09.017.
  • [9] Boy, J.-P. and Hinderer, J. (2006). Study of the seasonal gravity signal in superconducting gravimeter data. J. Geodyn., 41, 227–233. DOI: 0.1016/j.jog.2005.08.035.
  • [10] Boy, J.-P., Longuevergne, L., Boudin, F., Jacob, T., Lyard, F., Llubes, M., Florsch, N. and Esnoult, M.- F. (2009). Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements. J. Geodyn., 48, 182–188. DOI: 10.1016/j.jog.2009.09.022.
  • [11] Brzezinski, A., Barlik, M., Andrasik, E., Izdebski, W., Kruczyk, M., Liwosz, T., Olszak, T., Pachuta, A., Pieniak, M., Próchniewicz, D., Rajner, M., Szpunar, R., Tercjak, M. and Walo, J. (2016). Geodetic and geodynamic studies at department of geodesy and geodetic astronomy WUT. Reports on Geodesy and Geoinformatics, 100, 165–200. DOI: 10.1515/rgg-2016-0013.
  • [12] Denker, H. (2013). Regional Gravity Field Modeling: Theory and Practical Results. In: Xu G. (eds) Sciences of Geodesy – II. Springer, Berlin, Heidelberg, 185–291. DOI: 0.1007/978-3-642-28000-9_5.
  • [13] Dykowski, P. and Krynski, J. (2015a). Time dependent corrections to absolute gravity determinations In the establishment of modern gravity control. In: Geophysical Research Abstracts, 17, EGU2015-817, EGU General Assembly 2015, 12–17 April, Vienna, Austria.
  • [14] Dykowski, P. and Krynski, J. (2015b). Quality Assessment of the New Gravity Control in Poland: First Estimate. In: Jin S., Barzaghi R. (eds) IGFS 2014. International Association of Geodesy Symposia, 144. Springer, Cham. DOI: 10.1007/1345_2015_46.
  • [15] Dykowski, P. and Kry´nski, J. (2017). Aspects of establishing a modern gravity control: case study Borowa Gora Observatory. In: Symposium of the IAG Sub-commission for Europe (EUREF), Wroclaw, Poland, 17–19 May 2017.
  • [16] Dykowski, P. and Olszak, T. (2016). Lokalna kampania porównawcza grawimetrów absolutnych A10-020 i FG5-230 w Obserwatorium Geodezyjno-Geofizycznym Borowa Góra. In: seminar Współczesne problemy podstawowych osnów geodezyjnych w Polsce, Grybow, 14–16 September 2016.
  • [17] Dykowski, P., Krynski, J. and Sekowski M. (2015). Sensitivity of the A10 absolute gravimeter to the variation of local hydrological conditions – first results. In: XXVI IUGG General Assembly, 22 June – 3 July 2015, Prague, Czech Republic.
  • [18] Dykowski, P., Kry´nski, J. and S˛ekowski M. (2016). Installation and initial results from the iGrav-027 superconducting gravimeter at Borowa Gora Geodetic-Geophysical Observatory. In: 18th Geodynamice and Earth Tide Symposium, 5–9 June 2016, Trieste, Italy.
  • [19] Dykowski, P., Krynski, J. and Sekowski, M. (2017). First year of gravity records with the iGrav-027 superconducting gravimeter. In: IAG-IASPEI Joint Scientific Assembly, 30 July – 4 August 2017, Kobe, Japan.
  • [20] Dykowski, P., Krynski, J. and Sekowski, M. (2018a). The use of the A10-020 absolute gravimeter for the establishment and modernization of national gravity controls in Europe. In: Geophysical Research Abstracts, 20, EGU2018-2025, EGU General Assembly 2018, 8–13 April, Vienna, Austria.
  • [21] Dykowski, P., Sekowski, M., Krynski, J., Wilde-Piorko, M. (2018b). Report on the Borowa Gora (BG) IGETS Station. In: 1st Workshop on the International Geodynamics and Earth Tide Sernice (IGETS), 18–20 June 2018, Potsdam, Germany.
  • [22] Dykowski, P., Krynski, J., Wilde-Piorko, M. and Sekowski, M. (2018c). Assessment of I Grav-027 superconducting gravimeter for validation of gravity variations based on atmospheric and hydrological models. In: GGHS2018 “Gravity, Geoid and Height Systems 2” Symposium, 2nd joint meeting of the International Gravity Field Service and Commission 2 of the IAG, 17–21 September 2018, Copenhagen, Denmark.
  • [23] Dykowski, P., Sekowski, M. and Krynski, J. (2018d). Superconducting Gravimeter Data from Borowa Gora – Level 1. GFZ Data Services. 10.5880/igets.bg.l1.001.
  • [24] Dykowski, P., Sekowski, M. and Krynski, J. (2018e). Superconducting Gravimeter Data from Borowa Gora – Level 2. GFZ Data Services. 10.5880/igets.bg.l2.001.
  • [25] Elsaka, B., Alothman, A. and Godah, W. (2015). On the Contribution of GOCE Satellite-Based GGMs to Improve GNSS/Leveling Geoid Heights Determination in Saudi Arabia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9(12). DOI: 10.1109/JSTARS.2015.249519.
  • [26] Engfeldt, A., Lidberg, M., Sekowski, M., Dykowski, P., Krynski, J., Ågren, J., Olsson, P.-A., Bryskhe, H., Steffen, H. and Nielsen, J.E. (2018). RG 2000 – the new gravity reference frame of Sweden. In: FIG, XXVI International Congress, 6–11 May 2018, Istanbul, Turkey.
  • [27] Godah, W. and Krynski, J. (2015). Comparison of GGMs based on one year GOCE observations with the EGM08 and terrestrial data over the area of Sudan. Int. J. Appl. Earth Obs. Geoinf., 35, 128–135. DOI: 10.1016/j.jag.2013.11.003.
  • [28] Godah, W., Krynski, J. and Szelachowska, M. (2015a). On the accuracy assessment of the consecutive releases of GOCE-based GGMs over the area of Poland, Assessment of GOCE Geopotential Models. Newton’s Bulletin, 5, 49–62.
  • [29] Godah, W., Krynski, J. and Szelachowska, M. (2015b). Assessment of GOCE-based Global Geopotential Models and their use for modelling gravity field over Poland. In: XXVI IUGG General Assembly, 22 June – 3 July 2015, Prague, Czech Republic.
  • [30] Godah, W., Szelachowska, M. and Krynski, J. (2015c). Suitability of GRACE-based geopotential models for modelling temporal variations of gravity functionals over Poland and the surrounding areas. In: XXVI IUGG General Assembly, 22 June – 3 July 2015, Prague, Czech Republic.
  • [31] Godah, W., Szelachowska, M. and Krynski, J. (2015d). On the selection of GRACE-based GGMs and a filtering method for estimating mass variations in the Earth system over Poland. Geoinformation Issues, 7(1), 5–14.
  • [32] Godah,W., Szelachowska, M., Krynski, J. and Dykowski, P. (2016). Analysis of RL05 GRACE-based and GOCE/GRACE-based GGMs using gravity measurements at Borowa Gora Geodetic-Geophysical Observatory. In: ESA Living Planet Symposium 2016 and 6th GOCE User Workshop, 9–13 May 2016, Prague, Czech Republic.
  • [33] Godah,W., Szelachowska, M. and Krynski, J. (2017a). On the analysis of temporal geoid height variations obtained from GRACE-based GGMs over the area of Poland. Acta Geophys., 65(4), 713–725. DOI: 10.1007/s11600-017-0064-3.
  • [34] Godah, W., Szelachowska, M. and Krynski, J. (2017b). Investigation of geoid height variations and vertical displacements of the Earth surface in the context of the realization of a modern vertical reference system – a case study for Poland. In: Vergos G., Pail R., Barzaghi R. (eds.), International Sympodium on Gravity, Geoid and Height Systems 2016. International Association of Geodesy Symposia, vol. 148. Springer, Cham. DOI: 10.1007/1345_2017_15.
  • [35] Godah,W., Szelachowska, M. and Krynski, J. (2017c). On the estimation of physical height changes using GRACE satellite mission data – A case study of Central Europe. Geodesy and Cartography, 66(21), 213–228. DOI: 10.1515/geocart-2017-0013.
  • [36] Godah, W., Krynski, J. and Szelachowska, M. (2018a). The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models. J. Appl. Geophys., 152, 38–47. DOI: j.jappgeo.2018.03.002.
  • [37] Godah, W., Szelachowska, M., Öztürk, E.Z. and Krynski, J. (2018b). On the contribution of physical height changes estimated with the use of GRACE satellite mission data to the modernization of a national vertical system. In: AGU Fall Meeting, 10–14 December 2018, Washington, D.C., USA.
  • [38] Godah, W., Szelachowska, M. and Krynski, J. (2018c). Application of the PCA/EOF method for the analysis and modelling of temporal variations of geoid heights over Poland. Acta Geod. Geophys., 53(1), 93–105. DOI: 10.1007/s40328-017-0206-8.
  • [39] Hirt, C., Gruber, T. and Featherstone,W.E. (2011). Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J. Geod., 85(10), 723–740. DOI: 10.1007/s00190-011-0482-y.
  • [40] Kadaj, R. and Swieton, T. (2016). Theoretical and applied research in the field of higher geodety conducted in Rzeszow. Reports on Geodesy and Geoinformatics, 100, 79–100. DOI: 0.1515/rgg-2016-0008.
  • [41] Krynski, J. and Rogowski, J.B. (2015). National Report of Poland to EUREF 2015. In: Symposium of the IAG Sub-commission for Europe (EUREF), 3–5 June 2015, Leipzig, Germany.
  • [42] Krynski, J. and Rogowski, J.B. (2016). National Report of Poland to EUREF 2016. In: Symposium of the IAG Sub-commission for Europe (EUREF), 25–27 May 2016, San Sebastian, Spain.
  • [43] Krynski, J. and Rogowski, J.B. (2017). National Report of Poland to EUREF 2017. In: Symposium of the IAG Sub-commission for Europe (EUREF), 17–19 May 2017, Wroclaw, Poland.
  • [44] Krynski, J. and Rogowski, J.B. (2018). National Report of Poland to EUREF 2018. In: Symposium of the IAG Sub-commission for Europe (EUREF), 30 May-1 June 2018, Amsterdam, Netherlands.
  • [45] Krynski, J., Rogowski, J.B. and Liwosz, T. (2019). Research on reference frames and reference networks 2015–2018. Geodesy and Cartography, 68(1), 3–27. DOI: 10.24425/gac.2019.126093.
  • [46] Kuczynska-Siehien, J., Lyszkowicz, A. and Birylo, M. (2016). Geoid determination for the area of Poland by the least squares modification of Stokes’s formula. Acta Geodyn. Geomater., 13(1), 19–26. DOI: 10.13168/AGG.2015.0041.
  • [47] Kuczynska-Siehien, J. and Lyszkowicz, A. (2017). Evaluation of the altimetry data in the Baltic Sea region and computation of the new quasigeoid models for Poland. In: IAG-IASPEI Scientific Assembly, 30 July – 4 August 2017, Kobe, Japan.
  • [48] Kuczynska-Siehien, J., Lyszkowicz, A., Stepniak, K. and Krukowska, M. (2017). Determination of geopotential value W0L at Polish tide gauges from GNSS data and geoid model. Acta Geod. Geophys., 52, 527–534. DOI: 10.1007/s40328-016-0188-y.
  • [49] Ligas, M. and Kulczycki, M. (2018). Kriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling. Surv. Rev., 50(359), 155–162. DOI: 10.1080/00396265.2016.1247131.
  • [50] Mäkinen, J. and Ihde, J. (2008). The permanent tide in height systems. In: Sideris M.G. (eds) Observing our Changing Earth. International Association of Geodesy Symposia, vol. 133. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-85426-5_10.
  • [51] Mutke, G., Kotyrba, A., Lurka, A., Olszewska, D., Dykowski, P., Borkowski, A., Araszkiewicz, A. and Baranski, A. (2018). Upper Silesian Geophysical Observation System - a unit of European Plate Observing System. In: 4th International Conference on Applied Geophysics 2018, 28–29 June 2018, Krakow, Poland.
  • [52] Olszak, T., Marjanska, D. and Pietka, D. (2018). Validation and fitting of European Gravimetric Geoid EGG08 in context of realisation of EVRS system in Poland. In: GGHS2018 “Gravity, Geoid and Height Systems 2” Symposium, 2nd joint meeting of the International Gravity Field Service and Commission 2 of the IAG. Copenhagen, 17–21 September 2018.
  • [53] Pálinkáš, V., Francis, O., Val’ko, M., Kostelecký, J., Van Camp, M., Castelein, S., Bilker-Koivula, M., Näränen, J., Lothhammer, A., Falk, R., Schilling, M., Timmen, L., Iacovone, D., Baccaro, F., Germak, A., Biolcati, E., Origlia, C., Greco, F., Pistorio, A., De Plaen, R., Klein, G., Seil, M., Radinovic, R., Reudink, R., Dykowski, P., S˛ekowski, M., Próchniewicz, D., Szpunar, R., Mojzeš, M., Jank, M., Papco, J., Engfeldt, A., Olsson, P.A., Smith, V., Van Westrum, D., Ellis, B. and Lucero, B. (2017). Regional comparison of absolute gravimeters, EURAMET.M.G-K2 key comparison. Metrologia, 54, Technical Supplement.
  • [54] Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D. and Toll, D. (2004). The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85(3): 381–394. DOI: 10.1175/BAMS-85-3-381.
  • [55] Rzepecka, Z., Birylo, M., Kuczynska-Siehien, J., Nastula, J. and Pajak, K. (2017). Analysis of Ground Water Level Variations and Water Balance in the Area of the Sudety Mountains. Acta Geodyn. Geomater., 14(3), 307–315. DOI: 10.13168/AGG.2017.0014.
  • [56] Sekowski, M., Dykowski, P. and Krynski, J. (2016). New iGrav superconducting gravimeter station In Central Europe at the Borowa Gora Geodetic-Geophysical Observatory. Geoinformation Issues, 8(1), 5–17.
  • [57] Sosnica, K., Jäggi, A., Meyer, U., Thaller, D., Beutler, G., Arnold, D. and Dach, R. (2015). Time variable Earth’s gravity field from SLR satellite. J. Geod., 89, 945–960. DOI: 10.1007/s00190-015-0825-1.
  • [58] Sosnica, K., Kaplon, J., Rohm, W., Kudłacik, I., Zajdel, R., Hadas, T., Bosy, J., Sierny, J., Borkowski, A., Krynski, J., Dykowski, P., Mutke, G., Kotyrba, A. and Olszewska, D. (2018). Monitoring of Earth surface displacements using integrated multi-GNSS, gravity, seismic, and InSAR data in the framework of GGOS-PL++. In: 42nd COSPAR Scientific Assembly, 14–22 July 2018, Pasadena, California.
  • [59] Stepniak, K., Baryla, R., Paziewski, J., Golaszewski, P.,Wielgosz, P., Kurpinski, G. and Osada, E. (2017). Validation of regional geoid models for Poland: Lower Silesia case study. Acta Geodyn. Geomater., 14(1), 93–100. DOI: 10.13168/AGG.2016.0031.
  • [60] Szabo, V. and Barlik M. (2018). Analysis of changes compliance in gravity observed by satellite method with absolute measurements. In: Geophysical Research Abstracts, 20, EGU2018-9315, EGU General Assembly 2018, Vienna, Austria.
  • [61] Szelachowska, M. and Krynski, J. (2014). GDQM-PL13 – the new gravimetric quasigeoid model for Poland. Geoinformation Issues, 6(1), 5–19.
  • [62] Trojanowicz, M. (2015a). Estimation of optimal quantitative parameters of selected input data used in local quasigeoid modelling by the GGI method. J. Spat. Sci., 60(1), 167–178. DOI: 10.1080/14498596.2014.924442.
  • [63] Trojanowicz, M. (2015b). Assessment of the accuracy of local quasigeoid modelling using the GGI method: case study for the area of Poland. Stud. Geophys. Geod., 59(4), 505–523. DOI: 0.1007/s11200-014-0527-9.
  • [64] Walo, J., Prochniewicz, D., Olszak, T., Pachuta, A., Andrasik, E. and Szpunar, R. (2016). Geodynamic studies in the Pieniny Klippen belt in 2004–2015. Acta Geodyn. Geomater., 13(4), 351–363. DOI: 10.13168/AGG.2016.0017.
  • [65] Wilde-Piorko, M., Dykowski, P., Polkowski, M., Olszak, T., Grad, M., Krynski, J., Sekowski, M., Krankowski, A. and Rajner, M. (2017). Expanding seismic surface waves measurements towards low periods with gravity measurements. Geoinformation Issues, 9(1), 5–13.
  • [66] Wilde-Piorko, M., Dykowski, P., Polkowski, M., Sekowski, M., Grad, M. and Krynski, J. (2018). Determination of the Earth’s mantle structure from low-period seismic surface waves recorded by superconducting and spring gravimeters at the Borowa Góra Gora Observatory. In: 1st Workshop on the International Geodynamics and Earth Tide Service (IGETS), 18–20 June 2018, Potsdam, Germany.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54dc95d2-fe70-49d4-beb5-51da27a0ef24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.