PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the rigid alumina particles added to ZrO2 ceramics stabilized with Y2 O3 for its mechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ sztywnych korundowych cząstek dodawanych do ceramiki ZrO2 stabilizowanej Y2 O3 na jej właściwości mechaniczne
Języki publikacji
EN
Abstrakty
EN
The effect of the phase added to ZrO2 ceramics on its mechanical properties, and in partcular on the fracture toughness, was examined using the example of Al2 O3 - ZrO2 composite where ZrO2 was stabilized with 3 mol% of Y2O3 . Composites of 20% wt. Al2 O3 - 80 wt.% ZrO2 with different size of corundum grain were made. Vickers indenter crack resistance tests showed an increase of 21% in the value of this parameter for the samples with Al2 O3 grains of approx. 6.5 μm in comparison with pure ZrO2 ceramics. On the basis of literature data and microscopic observations, authors present a thesis that this increase is caused by two factors, i.e. the increase of the phase transition range (from tetragonal to monoclinic phase) accompanying crack propagation and the effect of large Al2 O3 grains as bridges fastening the fracture surfaces.
PL
Wpływ fazy dodawanej do ceramiki ZrO2 na jej właściwości mechaniczne w tym głównie na jej odporność na pękanie zbadano na przykładzie kompozytu Al2 O3 – ZrO2 gdzie ZrO2 było stabilizowane 3% mol Y2 O3 . Wykonano kompozyty 20% wag. Al2 O3 – 80% wag. ZrO2 różniące się wielkością ziarna korundowego. Badania odporności na pękanie prowadzone metodą wgłębnika Vickersa wykazały wzrost wielkości tego parametru o 21% dla próbek z ziarnami Al2 O3 o wielkości ok. 6,5 µm w porównaniu z czystą ceramiką ZrO2 . Na podstawie danych literaturowych oraz własnych obserwacji mikroskopowych postawiono tezę, że wzrost ten spowodowany jest przez dwa czynniki tj. zwiększenie się zakresu przemiany fazowej (z fazy tetragonalnej do jednoskośnej) towarzyszącej propagacji pęknięcia oraz działaniem dużych ziaren Al2 O3 jako mostków spinających powstające powierzchnie przełamu.
Rocznik
Strony
4--13
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw
  • Łukasiewicz Research Network - Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw
  • Łukasiewicz Research Network - Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw
  • Łukasiewicz Research Network - Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw
  • Łukasiewicz Research Network - Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw
  • Łukasiewicz Research Network - Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw
Bibliografia
  • [1] Okada A.: Automotive and industrial applications of structural ceramics in Japan, J.Eur.Ceram.Soc., 2008, 28, 1097-1104.
  • [2] Okada A.: Ceramic technologies for automotive industry: Current status and perspectives, Mater.Sci.Eng.B, 2009, 161, 182-187.
  • [3] Manicone FP.F., Iommetti P.R., Raffaelli L.: An overview of zirconia ceramics: Basic properties and clinical applications, J.of Dentistry, 2007, 35, 819-826.
  • [4] Krell A., Hutzler T., Klimke J. : Transmission physics and consequences for materials selection, manufacturing, and applications, J.Eur.Ceram.Soc., 2009, 29, 207-221.
  • [5] Wiederhorn S.M.: Subcritical crack growth in ceramics, in Fracture Mechanics of Ceramics, v.2 ed. By Bradt R.C., Hasselman D.P.H., Lange F.F., Plenum Press, New York, London, 1974, 613-646.
  • [6] Konopka K., Maj M., Kurzydłowski J.K.: Studies of the effect of metal particles on the fracture toughness of ceramic matrix composites, Materials Characterization, 2003, 51, 5, December, 335-340.
  • [7] Ostertag C.P.: Influence of fiber and grain bridging on crack profiles in SiC fiber-reinforced alumina-matrix composites, Mater.Sci.Eng. A, 1999, 260, 124-131.
  • [8] Bocanegra-Bernal M.H., Echeberia J., Ollo J.,et al.: A comparison of the effects of multi-wall and single- -wall carbon nanotube additions on the properties of zirconia toughened alumina composites, Carbon, 2011, 49, 5, 1599-1607.
  • [9] Boniecki M., Gołębiewski P., Wesołowski W., et al.: Alumina/zirconia composites toughened by the addition of graphene flakes, Ceram. Int., 2017, 43, 10066-10070.
  • 10] Liu J., Yan H., Reece M.J., Jiang K.: Toughening of zirconia/alumina composites by the addition of graphene platelets, J.Eur.Ceram.Soc., 2012, 32, 4185-4193.
  • [11] Shin J-H., Hong S-H.: Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics, J.Eur.Ceram.Soc., 2014, 34, 1297-1302.
  • [12] Fei Ch., Jin D., Tyeb K., et al.: Field assisted sintering of graphene reinforced zirconia ceramics, Ceram.Int., 2015, 41, 6113-6116.
  • [13] Li J-F., Watanabe R.: Fracture toughness of Al2 O3 - particle-dispersed Y2 O3 - partially stabilized zirconia, J.Am.Ceram.Soc., 1995, 78, 1079-1082.
  • [14] Lee J-K., Kim M-J., Lee E-G.: Influence of dispersed- -alumina particle size on the fracture toughness of 3 mol% yttria-stabilized zirconia polycrystals (3Y-TZP), J.Mater.Sci.Lett., 2002, 21, 259-261.
  • [15] Vleugels J., Van der Biest O.: Development and characterization of Y2 O3 – stabilized ZrO2 (Y-TZP) composites with TiB2 , TiN, TiC, and TiC0.5N0.5, J.Am. Ceram.Soc., 1999, 82 [10] 2717 – 2720.
  • [16] Basu B., Vleugels J., Van der Biest O.: Processing and mechanical properties of ZrO2 – TiB2 composites, J.Eur.Ceram.Soc., 2005, 25, 3629-3637.
  • [17] Haberko K., Pędzich Z. Róg G., Bućko M.M., Faryna M.: The TZP matrix-WC particulate composites, Eur.J.Solid State Inorg. Chem., 1995, 32, 593-601.
  • [18] Pędzich Z., Haberko K.: Toughening mechanism in the TZP - WC particulate composites, Key Eng.Mater., 1997, 132-136, 2076-2079.
  • [19] Pędzich Z., Haberko K., Piekarczyk J., Faryna M., Lityńska L.: Zirconia matrix-tungsten carbide particulate composites manufactured by hot-pressing technique, Mater. Lett., 1998, 70-75.
  • [20] Pędzich Z.: The reliability of particulate composites in the TZP/WC system, J.Eur.Ceram.Soc., 2004, 24, 3427-3430.
  • [21] Pędzich Z.: Fracture of oxide matrix composites with different phase arrangement, Key Eng. Mater., 2009, 409, 244-251.
  • [22] Pędzich Z.: Tungsten Carbide as an reinforcement in structural oxide-matrix composites, INTECH open science/open minds, chapter 4 (Tungsten Carbide - Processing and Applications), (2012), 81-102, (http:// dx.doi.org/10.5772/51183).
  • [23] Űnal N., Kern F., Ővecoglu M.L., Gadow R.: Influence of WC particles on the microstructural and mechanical properties of 3 mol % Y2 O3 stabilized ZrO2 matrix composites produced by hot pressing, J.Eur.Ceram.Soc., 2011, 31, 2267- 2275.
  • [24] Bamba N., Choa Y-Ho, Sekino T., Niihara K.: Mechanical properties and microstructure for 3 mol% yttria doped zirconia/silicon carbide nanocomposites, J.Eur.Ceram.Soc., 2003, 23, 773-780.
  • [25] Zhan G.-D., Lai T.-R., Shi J.-L., Yen T.-S., Zhou Y. Zhang Y.: Microstructure and mechanical properties of yttria-stabilized tetragonal zirconia polycrystals containing dispersed TiC particles, J.Mater.Sci., 1996, 31, 2903-2907.
  • [26] Stevens R.: Zirconia and zirconia ceramics. Introduction to zirconia. Magnesium Electron Publication. 113, July (1986), 56 pages.
  • [27] Cutler R.A., Reynolds J.R., Jones A.: Sintering and characterization of polycrystalline monoclinic, tetragonal and cubic zirconia, J.Am.Ceram.Soc., 1992, 73[8], 2173-2183.
  • [28] Govila R.K.: Strength characterization of yttria- -partially stabilized zirconia, J.Mater.Sci., 1995, 30, 2656-2667.
  • [29] Anstis G.R, Chantikul P., Lawn B.R., Marchall D.B.: A critical evaluation of indentation techniques for fracture toughness, J.Am.Ceram.Soc., 1981, 64, 533-538.
  • [30] Niihara K.: A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J.Mater. Sci. Lett., 1983, 2, 221-223.
  • [31] Boniecki M.: unpublished data, 2018.
  • [32] Bozkurt F., Schmidova E.: Fracture toughness evaluation of S355 steel using circumferentialy notched round bars, Periodica Polytechnica Transportation Engineering, 2018, 1-5, https://doi.org/10.3311/PPtr.11560.
  • [33] Munro R.G.: Evaluated material properties for a sintered α – alumina, J.Am.Ceram.Soc., 1997, 80 (8), 1919-1928.
  • [34] https://accuratus.com/silicar.html.
  • [35] Vallauri D., Adrian I.C.A., Chrysanthou A.: TiC – TiB2 composites: A review of phase relationships, processing and properties, J. Eur.Ceram. Soc., 2008, 28, 1697 – 1713.
  • [36] Małek O., Lauwers B., Perez Y., De Baets P., Vleugels J.: Processing of ultrafine ZrO2 toughened WC composites, J.Eur. Ceram.Soc., 2009, 29, 3371-3378.
  • [37] Selsing J.: Internal stresses in ceramics, J.Am.Ceram. Soc., 1961, 44,419.
  • [38] Budiansky B., Hutchinson J.W., Lambropoulus J.C.: Continuum theory of dilatant transformation toughening in ceramics, Int.J.Solids Struct., 1983, 19, 337-355.
  • [39] Evans A.G., Cannon R.M.: Toughening of brittle solids by martensitic transformation, Acta Metall., 986, 34, 761-800.
  • [40] PN-EN ISO 15732, October 2007. Fine ceramics (advanced ceramics, advanced technical ceramics). Test method for fracture thoughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method (ISO 15732:2003) (Eq. 8).
  • [41] Chantikul P., Anstis G.R., Lawn B.R, Marshall D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, Strength method, J.Am.Ceram.Soc., 1981, 64 [9], 539-543.
  • [42] PN – EN 843-1, December 2007. Advanced technical ceramics - Monolithic ceramics - Mechanical properties at room temperature - Part 1: Determination of flexural strength.
  • [43] PN-EN 843-2, December 2007. Advanced technical ceramics - Monolithic ceramics - Mechanical properties at room temperature - Part 2: Determination of the Young's modulus, shear modulus and Poisson's ratio.
  • [44] Boniecki M., Gołębiewski P., Wesołowski W. i inni: Kompozyt Al2 O3 -ZrO2 wzmocniony płatkami grafenowymi/Al2 O3 -ZrO2 composite reinforced with graphene platelets, Materiały Elektroniczne/Electronic Materials, 2016, 44, 1, 20-28.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54ce98af-c957-4734-a6fa-56fa65e8e800
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.