PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A computational model for color perception

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Color is not a physical quantity of an object. It cannot be measured. We can only measure reflectance, i.e. the amount of light reflected for each wavelength. Nevertheless, we attach colors to the objects around us. A human observer perceives colors as being approximately constant irrespective of the illuminant which is used to illuminate the scene. Colors are a very important cue in everyday life. They can be used to recognize or distinguish different objects. Currently, we do not yet know how the brain arrives at a color constant or approximately color constant descriptor, i.e. what computational processing is actually performed by the brain. What we need is a computational description of color perception in particular and color vision in general. Only if we are able to write down a full computational theory of the visual system then we have understood how the visual system works. With this contribution, a computational model of color perception is presented. This model is much simpler compared to previous theories. It is able to compute a color constant descriptor even in the presence of spatially varying illuminants. According to this model, the cones respond approximately logarithmic to the irradiance entering the eye. Cells in V1 perform a change of the coordinate system such that colors are represented along a red-green, a blue-yellow and a black-white axis. Cells in V4 compute local space average color using a resistive grid. The resistive grid is formed by cells in V4. The left and right hemispheres are connected via the corpus callosum. A color constant descriptor which is presumably used for color based object recognition is computed by subtracting local space average color from the cone response within a rotated coordinate system.
Słowa kluczowe
Rocznik
Strony
387--415
Opis fizyczny
Bibliogr. 73 poz., rys.
Twórcy
autor
  • Ernst Moritz Arndt Universität Greifswald Institut für Mathematik und Informatik Walther-Rathenau-Straße 47, 17487 Greifswald, Germany
Bibliografia
  • Adelson E. H. (2000) Lightness perception and lightness illusions. In: Gazzaniga M. (ed) The New Cognitive Neurosciences, MIT Press, Cambridge, MA, pp 339-351.
  • Agarwal V., Abidi B. R., Koschan A., Abidi M. A. (2006) An overview of color constancy algorithms. Journal of Pattern Recognition Research 1(1):42-54.
  • Barnard K., Finlayson G., Funt B. (1997) Color constancy for scenes with varying illumination. Computer Vision and Image Understanding 65(2):311-321.
  • Blake A. (1985) Boundary conditions for lightness computation in Mondrian world. Computer Vision, Graphics, and Image Processing 32:314-327.
  • Brainard D.H., Wandell B.A. (1986) Analysis of the retinex theory of color vision. Journal of the Optical Society of America A 3(10):1651-1661.
  • Brown P.K., Wald G. (1964) Visual pigments in single rods and cones of the human retina. Science 144:45-52.
  • Buchsbaum G. (1980) A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1):337-350.
  • Carandini M., Demb J.B., Mante V., Tolhurst D.J., Dan Y., Olshausen B.A., Gallant J.L., Rust N. (2005) Do we know what the early visual system does? The Journal of Neuroscience 25(46):10,577-10,597.
  • Dowling J.E. (1987) The retina: an approachable part of the brain. The Belknap Press of Harvard University Press, Cambridge, Massachusetts.
  • Dufort P.A., Lumsden C.J. (1991) Color categorization and color constancy in a neural network model of {V4}. Biological Cybernetics 65:293-303.
  • D'Zmura M., Lennie P. (1986) Mechanisms of color constancy. Journal of the Optical Society of America A 3(10):1662-1672.
  • D'Zmura M., Lennie P. (1992) Mechanisms of color constancy. In: Healey G.E., Shafer S.A., Wolff L.B. (eds) Color, Jones and Bartlett Publishers, Boston, pp 224-234.
  • Ebner M. (2004a) Color constancy using local color shifts. In: Pajdla T., Matas J. (eds) Proceedings of the 8th European Conference on Computer Vision, Part III, Prague, Czech Republic, Springer-Verlag, Berlin, pp 276-287.
  • Ebner M. (2004b) A parallel algorithm for color constancy. Journal of Parallel and Distributed Computing 64(1):79-88.
  • Ebner M. (2006) Evolving color constancy. Special Issue on Evolutionary Computer Vision and Image Understanding of Pattern Recognition Letters 27(11):1220-1229.
  • Ebner M. (2007a) Color Constancy. John Wiley & Sons, England.
  • Ebner M. (2007b) Estimating the color of the illuminant using anisotropic diffusion. In: Kropatsch W.G., Kampel M., Hanbury A. (eds) Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns, Vienna, Austria, Springer-Verlag, Berlin, pp 441-449.
  • Ebner M. (2007c) How does the brain arrive at a color constant descriptor? In: Mele F., Ramella G., Santillo S., Ventriglia F. (eds) Proceedings of the 2nd International Symposium on Brain, Vision and Artificial Intelligence, Naples, Italy, Springer, Berlin, pp 84-93.
  • Ebner M. (2009) Color constancy based on local space average color. Machine Vision and Applications Journal 20(5):283-301.
  • Ebner M. (2012a) On the effect of scene motion on color constancy. Biological Cybernetics 105(1):319-330.
  • Ebner M. (2012b) Why color constancy improves for moving objects. In: Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, Vilamoura, Algarve, Portugal, Science and Technology Publications, Portugal, pp 193-193.
  • Ebner M., Herrmann C. (2005) On determining the color of the illuminant using the dichromatic reflection model. In: Kropatsch W., Sablatnig R., Hanbury A. (eds) Pattern Recognition, Proceedings of the 27th DAGM Symposium, Vienna, Austria, Springer-Verlag, Berlin, pp 1-8.
  • Fain G.L., Dowling J.E. (1973) Intracellular recordings from single rods and cones in the mudpuppy retina. Science 180:1178-1181.
  • Faugeras O.D. (1979) Digital color image processing within the framework of a human visual model. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-27(4):380-393.
  • Finlayson G.D. (1996) Color in perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10):1034-1038.
  • Finlayson G.D., Hordley S.D. (2001) Color constancy at a pixel. Journal of the Optical Society of America A 18(2):253-264.
  • Finlayson G.D., Schaefer G. (2001) Solving for colour constancy using a constrained dichromatic reflection model. International Journal of Computer Vision 42(3):127-144.
  • Finlayson G.D., Schiele B., Crowley J.L. (1998) Comprehensive colour image normalization. In: Burkhardt H., Neumann B. (eds) Fifth European Conference on Computer Vision, Freiburg, Germany, Springer-Verlag, Berlin, pp 475-490.
  • Forsyth D.A. (1988) A novel approach to colour constancy. In: Second International Conference on Computer Vision, Tampa, FL, IEEE Press, pp 9-18.
  • Frankle J.A., McCann J.J. (1983) Method and apparatus for lightness imaging. United States Patent No 4,384,336.
  • Galarreta M., Hestrin S. (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72--75.
  • Glasser L.G., McKinney A.H., Reilly C.D., Schnelle P.D. (1958) Cube-root color coordinate system. Journal of the Optical Society of America 48(10):736--740.
  • Hedgecoe J. (2004) Fotografieren: die neue große Fotoschule. Dorling Kindersley Verlag GmbH, Starnberg.
  • Helson H. (1938) Fundamental problems in color vision. I. the principle governing changes in hue, saturation, and lightness of non-selective samples in chromatic illumination. Journal of Experimental Psychology 23(5):439--476.
  • Herault J. (1996) A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 12:113-129.
  • Horn B.K.P. (1974) Determining lightness from an image. Computer Graphics and Image Processing 3:277-299.
  • Horn B.K.P. (1986) Robot Vision. The MIT Press, Cambridge, Massachusetts.
  • Hurlbert A. (1986) Formal connections between lightness algorithms. J. Opt. Soc. Am. A 3(10):1684-1693.
  • Hurlbert A. (1999) Colour vision: Is colour constancy real? Current Biology 9:558-561.
  • Jacobsen R.E., Ray S.F., Attridge G.G., Axford N.R. (2000) The Manual of Photography. Photographic and Digital Imaging. Focal Press, Oxford.
  • Judd D.B. (1940) Hue saturation and lightness of surface colors with chromatic illumination. Journal of the Optical Society of America 30:2-32.
  • Koch C. (1999) Biophysics of Computation. Oxford University Press, New York.
  • Koenderink J.J., van Doorn A.J. (1999) The structure of locally orderless images. International Journal of Computer Vision 31(2/3):159-168.
  • Koenderink J.J., van Doorn A.J. (2000) Blur and disorder. Journal of Visual Communication and Image Representation 11:237-244.
  • Land E.H. (1964) The Retinex. American Scientist 52:247-264.
  • Land E.H. (1974) The Retinex theory of colour vision. Proc. Royal Inst. Great Britain 47:23-58.
  • Land E.H. (1986) An alternative technique for the computation of the designator in the Retinex theory of color vision. Proc. Natl. Acad. Sci. USA 83:3078-3080.
  • Land E.H., McCann J.J. (1971) Lightness and retinex theory. Journal of the Optical Society of America 61(1):1-11.
  • Land E.H., Hubel D.H., Livingstone M.S., Perry S.H., Burns M.M. (1983) Colour-generating interactions across the corpus callosum. Nature 303:616-618.
  • Linnell K.J., Foster D.H. (1997) Space-average scene colour used to extract illuminant information. In: Dickinson C., Murray I., Carden D. (eds) John Dalton's Colour Vision Legacy. Selected Proceedings of the International Conference, Taylor & Francis, London, pp 501-509.
  • Livingstone M.S., Hubel D.H. (1984) Anatomy and physiology of a color system in the primate visual cortex. The Journal of Neuroscience 4(1):309-356.
  • Maio V.D. (2007) Excitatory synaptic interaction on the dendritic tree. In: Mele F., Ramella G., Santillo S., Ventriglia F. (eds) Advances in Brain, Vision, and Artificial Intelligence. Proceedings of the 2nd International Symposium, Naples, Italy, Springer-Verlag, Berlin, pp 388-397.
  • Maloney L.T. (1999) Physics-based approaches to modeling surface color perception. In: Gegenfurtner K.R., Sharpe L.T. (eds) Color Vision: From Genes to Perception, Cambridge University Press, Cambridge, UK, pp 387-422.
  • Marks W.B., Dobelle W.H., MacNichol Jr E.F. (1964) Visual pigments of single primate cones. Science 143:1181-1183.
  • Marr D. (1982) Vision. W. H. Freeman and Company, New York.
  • McCann J.J. (1989) The role of simple nonlinear operations in modeling human lightness and color sensations. In: Rogowitz B.E. (ed) Proc. of SPIE Vol. 1077 Human Vision, Visual Processing, and Digital Display, pp 355-363.
  • McCann J.J. (1997) Adaptation or contrast: The controlling mechanism for colour constancy. In: Dickinson C., Murray I., Carden D. (eds) John Dalton's Colour Vision Legacy. Selected Proceedings of the International Conference, Taylor & Francis, London, pp 469-473.
  • McCann J.J., McKee S.P., Taylor T.H. (1976) Quantitative studies in retinex theory. Vision Res 16:445-458.
  • Moore A., Allman J., Goodman R.M. (1991) A real-time neural system for color constancy. IEEE Transactions on Neural Networks 2(2):237--247.
  • Parker J.R. (1997) Algorithms for Image Processing and Computer Vision. John Wiley & Sons, Inc., New York.
  • Paulus D., Csink L., Niemann H. (1998) Color cluster rotation. In: Proceedings of the International Conference on Image Processing (ICIP), IEEE Computer Society Press, pp 161-165.
  • Rahman Z., Jobson D.J., Woodell G.A. (1999) Method of improving a digital image. United States Patent No 5,991,456.
  • Richards W., Parks E.A. (1971) Model for color conversion. Journal of the Optical Society of America 61(7):971--976.
  • Risson V.J. (2003) Determination of an illuminant of digital color image by segmentation and filtering. United States Patent Application, Pub No US 2003/0095704 A1.
  • Smithson H.E. (2005) Sensory, computational and cognitive components of human colour constancy. Philosophical Transactions of the Royal Society B 360:1329-1346.
  • Tappen M.F., Freeman W.T., Adelson E.H. (2002) Recovering intrinsic images from a single image. Tech. Rep. AI Memo 2002-015, Massachusetts Institute of Technology, Artificial Intelligence Laboratory.
  • Tominaga S. (1991) Surface identification using the dichromatic reflection model. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(7):658-670.
  • Veruki M.L., Hartveit E. (2002) All (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33:935-946.
  • van de Weijer J., Gevers T., Gijsenij A. (2007) Edge-based color constancy. IEEE Transactions on Image Processing 16(9):2207-2214.
  • Werner A. (2007) Color constancy improves, when an object moves: High-level motion influences color perception. Journal of Vision 7(14):1-14.
  • Zeki S. (1993) A Vision of the Brain. Blackwell Science, Oxford.
  • Zeki S., Bartels A. (1999) The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4α) of the human colour centre. Proc. R. Soc. Lond. B 354:1371-1382.
  • Zeki S., Marini L. (1998) Three cortical stages of colour processing in the human brain. Brain 121:1669-1685.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54ca168f-54cf-43df-ac20-f337a1aef86e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.