PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of Extension-Bending and Extension-Twisting Coupled Laminates in Elastic Element

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals with the design of the stacking sequence of layers in composite plate element in order to create the desired behaviour in the postcritical range. Tested plates were made of carbon fiber reinforced polymer (CFRP) laminate with different layer arrangement. As the type of load, the axial compression was assumed. The configurations have been choosen specifically to investigate the influence of Extension-Twisting and Extension-Bending coupled designs under axial load. To analyse the influence of layer arrangement on the posbuckling behaviour the parametric study was performed. Matlab software and a script developed by the author were used to calculate the components of ABD matrix. Additionally, the experimental validation was carried out together with numerical analysis.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Falkowicz K, Debski H, Teter A. Design solutions for improving the lowest buckling loads of a thin laminate plate with notch, Lublin, Poland: 2018, p. 080004. https://doi.org/10.1063/1.5019075.
  • 2. Rozylo P, Falkowicz K, Wysmulski P, Debski H, Pasnik J, Kral J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials 2021;14:1506. https://doi.org/10.3390/ma14061506.
  • 3. Kubiak T, Urbaniak M, Kazmierczyk F. The Influence of the Layer Arrangement on the Distortional Post-Buckling Behavior of Open Section Beams. Materials 2020;13:3002. https://doi.org/10.3390/ ma13133002.
  • 4. Banat D, Mania RJ. Progressive failure analysis of thin-walled Fibre Metal Laminate columns subjected to axial compression. Thin-Walled Structures 2018;122:52–63. https://doi.org/10.1016/j. tws.2017.09.034.
  • 5. Wysmulski P, Debski H, Falkowicz K. Sensitivity of Compressed Composite Channel Columns to Eccentric Loading. Materials 2022;15:6938. https:// doi.org/10.3390/ma15196938.
  • 6. Wysmulski P, Teter A, Debski H. Effect of load eccentricity on the buckling of thin-walled laminated C-columns, Lublin, Poland: 2018, p. 080008. https://doi.org/10.1063/1.5019079.
  • 7. York CB. Unified Approach to the Characterization of Coupled Composite Laminates: Benchmark Configurations and Special Cases. J Aerosp Eng 2010;23:219–42. https://doi.org/10.1061/(ASCE) AS.1943-5525.0000036.
  • 8. York CB. On tapered warp-free laminates with single-ply terminations. Composites Part A: Applied Science and Manufacturing 2015;72:127–38. https://doi.org/10.1016/j.compositesa.2015.01.022.
  • 9. York CB, Lee KK. Test validation of extensiontwisting coupled laminates with matched orthotropic stiffness. Composite Structures 2020;242:112142. https://doi.org/10.1016/j.compstruct.2020.112142.
  • 10. Cross RJ, Haynes RA, Armanios EA. Families of Hygrothermally Stable Asymmetric Laminated Composites. Journal of Composite Materials 2008;42:697–716. https://doi. org/10.1177/0021998308088597.
  • 11. Teter A, Mania RJ, Kolakowski Z. Effect of selected elements of the coupling stiffness submatrix on the load-carrying capacity of hybrid columns under compression. Composite Structures 2017;180:140–7. https://doi.org/10.1016/j.compstruct.2017.08.001.
  • 12. Chia C-Y. Nonlinear analysis of plates. New York ; London: McGraw-Hill International Book Co; 1980.
  • 13. Falkowicz K, Samborski S, Valvo PS. Effects of Elastic Couplings in a Compressed Plate Element with Cut-Out. Materials 2022;15:7752. https://doi. org/10.3390/ma15217752.
  • 14. Altenbach H., Altenbach J.W., Kissing W. Mechanics of composite structural elements. Berlin Heilderberg: Springer; 2013.
  • 15. Rzeczkowski J, Samborski S, Valvo PS. Effect of stiffness matrices terms on delamination front shape in laminates with elastic couplings. Composite Structures 2020;233:111547. https://doi. org/10.1016/j.compstruct.2019.111547.
  • 16. Samborski S. Analysis of the end-notched flexure test configuration applicability for mechanically coupled fiber reinforced composite laminates. Composite Structures 2017;163:342–9. https://doi. org/10.1016/j.compstruct.2016.12.051.
  • 17. York CB. On Extension–Shearing coupled laminates. Composite Structures 2015;120:472–82. https://doi.org/10.1016/j.compstruct.2014.10.019
  • 18. York CB, de Almeida SFM. On Extension-Shear- ing Bending-Twisting coupled laminates. Composite Structures 2017;164:10–22. https://doi. org/10.1016/j.compstruct.2016.12.041.
  • 19. York CB, de Almeida SFM. Effect of bending-twisting coupling on the compression and shear buckling strength of infinitely long plates. Composite Structures 2018;184:18–29. https://doi.org/10.1016/j. compstruct.2017.09.085.
  • 20. Falkowicz K, Debski H. Stability analysis of thin walled composite plate in unsymmetrical configration subjected to axial load. Thin-Walled Structures 2021;158:107203. https://doi.org/10.1016/j. tws.2020.107203.
  • 21. Falkowicz K, Debski H, Wysmulski P. Effect of extension-twisting and extension-bending coupling on a compressed plate with a cut-out. Composite Structures 2020;238:111941. https://doi.org/10.1016/j. compstruct.2020.111941.
  • 22. Falkowicz K, Szklarek K. Analytical method for projecting the buckling form of composite palates with a cut-out. IOP Conf Ser: Mater Sci Eng 2019;710:012021. https://doi. org/10.1088/1757-899X/710/1/012021.
  • 23. ESDU. Stiffnesses of laminated plates. Engineering sciences data unit, Item no. 94003 1994.
  • 24. Różyło P, Smagowski W, Paśnik J. Experimental Research in the Aspect of Determining the Mechanical and Strength Properties of the Composite Material Made of Carbon-Epoxy Composite. Adv Sci Technol Res J 2023;17:232–46. https://doi. org/10.12913/22998624/161598.
  • 25. Falkowicz K, Dębski H, Wysmulski P, Różyło P. The behaviour of compressed plate with a central cut-out, made of composite in an asymmetrical arrangement of layers. Composite Structures 2019;214:406–13. https://doi.org/10.1016/j.compstruct.2019.02.001.
  • 26. Jonak J, Karpiński R, Siegmund M, Wójcik A, Jonak K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials 2020;13:4657. https:// doi.org/10.3390/ma13204657.
  • 27. Machrowska A, Karpiński R, Jonak J, Szabelski J, Krakowski P. Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science 2020:88–101. https://doi.org/10.23743/acs-2020-24.
  • 28. Jonak J, Karpiński R, Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys: Conf Ser 2021;2130:012012. https://doi.org/10.1088/1742-6596/2130/1/012012.
  • 29. Jonak J, Karpiński R, Wójcik A, Siegmund M. Numerical Investigation of the Formation of a Failure Cone during the Pullout of an Undercutting Anchor. Materials 2023;16:2010. https://doi.org/10.3390/ ma16052010.
  • 30. Falkowicz K. Stability Analysis of Thin-Walled Perforated Composite Columns Using Finite Element Method. Materials 2022;15:8919. https://doi. org/10.3390/ma15248919.
  • 31. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Composite Structures 2023;305:116474. https://doi.org/10.1016/j. compstruct.2022.116474. 32.
  • 32. Falkowicz K, Ferdynus M, Rozylo P. Experimental and numerical analysis of stability and failure of compressed composite plates. Composite Structures 2021;263:113657. https://doi.org/10.1016/j. compstruct.2021.113657.
  • 33. Rozylo P, Falkowicz K. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Composite Structures 2021;273:114298. https://doi.org/10.1016/j. compstruct.2021.114298.
  • 34. Carl T. Herakovich H. Mechanics of fibrous composites. New York: Wiley and Sons; 1998.
  • 35. Haynes R, Cline J, Shonkwiler B, Armanios E. On plane stress and plane strain in classical lamination theory. Composites Science and Technology 2016;127:20–7. https://doi.org/10.1016/j. compscitech.2016.02.010.
  • 36. Jones RM. Mechanics of Composite Materials. 2nd ed. CRC Press; 2018. https://doi. org/10.1201/9781498711067.
  • 37. Samborski S. Numerical analysis of the DCB test configuration applicability to mechanically coupled Fiber Reinforced Laminated Composite beams. Composite Structures 2016;152:477–87. https:// doi.org/10.1016/j.compstruct.2016.05.060.
  • 38. York C. Unified approach to the characterization of coupled composite laminates: Hygro‐thermally curvature‐stable configurations. International Journal of Structural Integrity 2011;2:406–36. https://doi. org/10.1108/17579861111183920.
  • 39. York CB. Tapered hygro-thermally curvature-stable laminates with non-standard ply orientations. Composites Part A: Applied Science and Manufacturing 2013;44:140–8. https://doi.org/10.1016/j. compositesa.2012.08.023.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54c9dbfe-3f9d-4295-9d45-eb42b122671f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.