PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the numerical studies on planar and tubular solid oxide fuel cells within four EU projects of the 7th framework programme

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.
Rocznik
Strony
377--–393
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • West Pomeranian University of Technology, Faculty of Technology and Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, Piastów Ave. 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Faculty of Technology and Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, Piastów Ave. 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Faculty of Technology and Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, Piastów Ave. 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Faculty of Technology and Chemical Engineering, Institute of Chemical Engineering and Environmental Protection Processes, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Ameri M., Mohammadi R., 2013. Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software. Int. J. Energy Res., 37, 5. DOI: 10.1002/er.1941.
  • 2. Andersson M., Yuan J.L., Sunden B., 2010. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl. Energy, 87, 1461–1476. DOI: 10.1016/j.apenergy. 2009.11.013.
  • 3. Bao Ch., Wang Y., Feng D., Jiang Z., Zhang X., 2018. Macroscopic modeling of solid oxide fuel cell, SOFC, and model based control of SOFC and gas turbine hybrid system. Prog. Energy Combust. Sci., 66, 83–140. DOI: 10.1016/j.pecs.2017.12.002.
  • 4. Bossel U., 2012. Rapids startup SOFC moduels. Energy Procedia, 28, 48–56. DOI: 10.1016/j.egypro.2012.08.039.
  • 5. Campanari S., 2001. Thermodynamic model and parametric analysis of a tubular SOFC module. J. Power Sources, 92, 1-2, 26–34. DOI: 10.1016/S0378-7753(00)00494-8.
  • 6. Choundhury A., Chandra H., Arora A., 2013. Application of solid oxide fuel cell technology for power. Renewable Sustainable Energy Rev., 430–442. DOI: 10.1016/j.rser.2012.11.031.
  • 7. Coplan C.O., Dincer I., Hamdullahpur F., 2008. A review on macro-level modeling of planar solid oxide fuel cells. Int. J. Energy Res., 32, 336–355. DOI: 10.1002/er.1363.
  • 8. Dincer I., Acar C., 2015. A review on clean energy solutions for better sustainability. Int. J. Energy Res., 39, 5. DOI: 10.1002/er.3329.
  • 9. Fernandes M.D., de P. Andrade S.T., Bistritzki V.N., Fonseca R.M., Zacarias L.G., Goncalves H.N.C., de Castro A.F., Domingues R.Z., Matencio T., 2018. SOFC-APU systems for aircraft: A review. Int. J. Hydrogen Energy, 43, 16311–16333. DOI: 10.1016/j.ijhydene.2018.07.004.
  • 10. Hou Q., Zhao H., Yang X., 2018. Thermodynamic performance study of integrated MR-SOFC-CCHP system. Energy, 150, 434–450. DOI: 10.1016/j.energy.2018.02.105.
  • 11. McPhail S.J., Kiviaho J., Conti B., 2017. The yellow pages of SOFC technology. International status of SOFC deployment. VTT Technical Research Centre of Finland Ltd., Finland. Available at: https://www.ieafuelcell.com/documents/The_yellow_pages_of_SOFC_technology%202017.pdf
  • 12. Pianko-Oprych P., Zinko T., Jaworski Z., 2015a. Simulation of thermal stresses for new designs of microtubular Solid Oxide Fuel Cell stack. Int. J. Hydrogen Energy, 40, 14584–14595. DOI: 10.1016/j.ijhydene.2015.05.164.
  • 13. Pianko-Oprych P., Zinko T., Jaworski Z., 2015b. Numerical analysis of thermal stresses in a new design of microtubular stack. Open Chem., 13, 1045–1062. DOI: 10.1515/chem-2015-0116.
  • 14. Pianko-Oprych P., Zinko T., Jaworski Z., 2015c. Modeling of thermal stresses in a microtubular Solid Oxide Fuel Cell stack. J. Power Sources, 300, 10–23. DOI: 10.1016/j.jpowsour.2015.09.047.
  • 15. Pianko-Oprych P., Zinko T., Jaworski Z., 2016a. Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell. Polish J. Chem. Technol., 18, 1, 64–71. DOI: 10.1515/pjct-2016-0011.
  • 16. Pianko-Oprych P., Zinko T., Jaworski Z., 2016b. A numerical investigation of the thermal stresses of a planar Solid Oxide Fuel Cell. Materials, 9, 814–831. DOI: 10.3390/ma9100814.
  • 17. Pianko-Oprych P., Hosseini S.M., 2017. Dynamics analysis of load operations of two-stage SOFC stacks power generation system. Energies, 10, 2103–21024. DOI: 10.3390/en10122103.
  • 18. Pianko-Oprych P., Palus M., 2017. Simulation of SOFCs based power generation system using Aspen. Polish J. Chem. Technol., 19, 4. DOI: 10.1515/pjct-2017-0061.
  • 19. Pianko-Oprych P., Zinko T., Jaworski Z., 2017a. CFD modeling of hydrogen starvation conditions in a planar Solid Oxide Fuel Cell. Polish J. Chem. Technol., 19, 2, 16–25. DOI: 10.1515/pjct-2017-0022.
  • 20. Pianko-Oprych P., Zinko T., Jaworski Z., 2017b. Computational Fluid Dynamics Calculation of a planar Solid Oxide Fuel Cell design running on syngas. Chem. Process Eng., 38, 4, 513–521. DOI: 10.1515/cpe-2017-0040.
  • 21. Zinko T., Pianko-Oprych P., Jaworski Z., 2016. Three-dimensional modelling of thermal stresses in a planar solid oxide fuel cell of a novel design. Informatyka Automatyka Pomiary w Gospodarce i Ochronie ´ Srodowiska, 6, 1, 69–72. DOI: 10.5604/20830157.1194293.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54c74f67-82c4-4692-af78-6df546061615
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.