PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water absorption process in the thermo-mechanically modified iroko and tauari wood

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was to determine the impact of thermo-mechanical treatment on absorption and absorption speed of iroko (Milicia exelsa (Welw.) C.C. Berg) and tauari (Couratari spp.) wood. Wood was densified in a hydraulic press in the radial direction at 100 oC and 150 oC. The modification temperature had greater impact on the density of tauari wood than on the density of iroko wood. Water absorption process depended on the wood species, the type of material (non-densified, densified), densification temperature. Iroko wood was characterized by a greater dynamic of changes in water absorption over time than tauari wood. The densified tauari wood at the maximum saturation had lower moisture content than the non-densified tauari wood. Speed of water absorption in thermo-mechanically modified wood was lower than in non-densified wood, especially noticeable in the first 30 seconds of soaking.
Twórcy
autor
  • Department of Wood Science and Wood Preservation, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02 - 776 Warsaw
  • Department of Wood Science and Wood Preservation, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02 - 776 Warsaw
autor
  • Department of Wood Science and Wood Preservation, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02 - 776 Warsaw
Bibliografia
  • 1. CIRAD 2012: Tauari. Tropix 7. Agricultural research for development.https://tropix.cirad.fr/.
  • 2. EN 13226:2009 Wood flooring. Solid parquet elements with grooves and/or tongues. European Committee for Standardization, Brussels, Belgium.
  • 3. EN 1534:2010 Wood flooring - Determination of resistance to indentation - Test method. European Committee for Standardization, Brussels, Belgium.
  • 4. EN 1910:2016 Wood flooring and wood panelling and cladding. Determination of dimensional stability. European Committee for Standardization, Brussels, Belgium.
  • 5. FANG CH.-H., MARIOTTI N., CLOUTIER A., KOUBAA A., BLANCHET P. 2012: Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Wood Prod. 70(1-3):155–163.
  • 6. HILL C.A.S., RAMSAY J., KEATING B., LAINE K., RAUTKARI L., HUGHES M., CONSTANT B. 2012: The water vapour sorption properties of thermally modified and densified wood. J. Mater. Sci. 47(7):3191-3197.
  • 7. ISO 13061-1:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 1: Determination of moisture content for physical and mechanical tests. International Organization of Standardization, Geneva, Switzerland.
  • 8. ISO 13061-2:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 2: Determination of density for physical and mechanical tests. International Organization of Standardization, Geneva, Switzerland.
  • 9. KOZAKIEWICZ P. 2005: Materiały pomocnicze do ćwiczeń z fizyki drewna [Auxiliary materials for laboratory exercises in wood science]. Warsaw University of Life Sciences, SGGW, Warsaw, Poland.
  • 10. KUTNAR A., KAMKE F.A. 2012: Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci. Technol. 46(5):953–964.
  • 11. LAINE K., RAUTKARI L., HUGHES M., KUTNAR A. 2013: Reducing the setrecovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur. J. Wood Wood Prod. 71(1):17–23.
  • 12. LAINE K., SEGERHOLM K., WÅLINDER M., RAUTKARI L., ORMONDROYD G., HUGHES M., JONES D. 2014: Micromorphological studies of surface densified wood. J. Mater. Sci. 49(5): 2027–2034.
  • 13. LASKOWSKA A. 2017: The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth). BioResources 12(3):6011–6023.
  • 14. LASKOWSKA A., SOBCZAK J.W. 2018: Surface chemical composition and roughness as factors affecting the wettability of thermo-mechanically modified oak (Quercus robur L.). Holzforschung, published online, https://doi.org/10.1515/hf-2018-0022.
  • 15. MORSING N. 2000: Densification of Wood. The Influence of Hygrothermal Treatment on Compression of Beech Perpendicular to the Grain, Ph.D. Dissertation, Department of Structural Engineering and Materials, Technical University of Denmark, Kongens Lyngby.
  • 16. RAUTKARI L., PROPERZI M., PICHELIN F., HUGHES M. 2010: Properties and setrecovery of urface densified Norway spruce and European beech. Wood Sci. Technol. 44(4):679–691.
  • 17. RICHTER H.G., DALLWITZ M.J. 2000: Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, Portuguese, and Spanish. Version: 25th June 2009. http://delta-intkey.com.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54c61eec-c570-460f-a55c-99257f352914
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.