PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dimensional-Shape Verification of a Selected Part of Machines Manufactured by Additive Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The publication covers the complex process of analyzing the accuracy of mapping models produced in AM (Additive Manufacturing) processes with a thermoplastic material – FFF (Fused Filament Fabrication) and polymerization of light-curing resin – PolyJet. The research was conducted with the use of an advanced optical measuring system – the GOM Atos 3D scanner. The part selected for the research in question was the water pump body as a representative example of an element with adequate dimensional and shape conditions (high degree of folding and geometric differentiation) allowing, based on the results of coordinate measurements determined in the research process, to define the potential area of application of AM models made of thermoplastic material and resin hardened with UV light. The performed tests showed the accuracy of individual AM methods at a level within the range declared by machine manufacturers. However, the PolyJet body is characterized by a much higher accuracy of the shape mapping compared to the FFF body. The dimensional accuracy is also higher for the resin model in relation to the thermoplastic model, which results primarily from the thickness of the elementary layer of the model material applied by the printing module defined for individual incremental processes – 16 μm for RGD 720 and 0.2 mm for ABS. Detailed elaboration and analysis of the research results are presented in this publication.
Twórcy
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Manjaiah M., Raghavendra K., Balashanmugam N., Paulo Davim J. Additive Manufacturing: A Tool for Industrial Revolution 4.0, Elsevier Science, 2021.
  • 2. Badiru A.B., Valencia V.V., Liu D. Additive Manufacturing Handbook. Product Development for the Defense Industry, CRC Press, 2020.
  • 3. Wohlers Report, 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, 2018.
  • 4. Budzik G., Siemiński P. Techniki przyrostowe. Druk 3D. Drukarki 3D., Oficyna Wydawnicza Politechniki Warszawskiej, 2015.
  • 5. Bernaczek J., Dębski M., Gontarz M., Kiełbiscki M., Magniszewski M., Przeszłowski Ł. Influence of torsion on the structure of machine elements made of polymeric materials by 3D printing, POLIMERY 2021; 66(5): 298–304.
  • 6. Budzik G., Magniszewski M., Oleksy M., Oliwa R., Bernaczek J. Torsional strengh testing of machine elements manufacture by incremental technology from polymeric materials POLIMERY 2018; 63(11–12): 830–832.
  • 7. Dziubek T., Budzik G., Kawalec A., Dębski M., Turek P., Oleksy M., Paszkiewicz A., Poliński P., Kochmański Ł., Kiełbicki M., Józwik J., Kuric I., Cebulski J. Strength of threaded connections additively produced from polymeric materials, Polimery 2022; 67(6): 261–270.
  • 8. Orth A., Sampson K.L., Zhang Y., Ting K., Aranguren van Egmond D., Laqua K., Lacelle T., Webber D., Fatehi D., Boisvert J., Paquet C. On-the-fly 3D metrology of volumetric additive manufacturing, Additive Manufacturing 2022; 56: 102869.
  • 9. Vora H.D., Sanyal S. A comprehensive review: metrology in additive manufacturing and 3D printing technology, Progress in Additive Manufacturing 2020; 5: 319–353.
  • 10. Wi K., Suresh V., Wang K., Li B., Qin H. Quantifying quality of 3D printed clay objects using a 3D structured light scanning system, Additive Manufacturing 2020; 32: 100987.
  • 11. Gao X., Kuang X., Li J., Qi S., Su Y., Wang D. Fused filament fabrication of polymer materials: A review of interlayer bond, Additive Manufacturing 2021; 37: 101658.
  • 12. Chen J., Smith D.E. Filament rheological characterization for fused filament fabrication additive manufacturing: A low-cost approach, Additive Manufacturing 2021; 47: 102208.
  • 13. Kattinger J., Ebinger T., Kurz R, Bonten C. Numerical simulation of the complex flow during material extrusion in fused filament fabrication, Additive Manufacturing 2022; 49: 102476.
  • 14. Phan D.D., Swain Z.R., Mackay M.E. Rheological and heat transfer effects in fused filament fabrication, Journal of Rheology 2018; 62(5): 1097–1107.
  • 15. Bell D., Siegmund T. 3D-printed polymers exhibit a strength size effect, Additive Manufacturing 2018; 21: 658–665.
  • 16. Gunasekaran J., Sevvel P., Solomon I.J. A review of the various processing parameters in FDM, Materials Today: Proceedings 2021; 37; 509–514.
  • 17. Hashimoto M., Parthiban P., Vijayan S. Evaluation of Lateral and Vertical Dimensions of Micromolds Fabricated by a PolyJet Printer, Micromachines 2021; 12(3): 302.
  • 18. Królczyk G., Kacalak W., Wieczorowski M. 3D Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes, Materials 2021; 14(8): 1997.
  • 19. Gold S.A., Turner B.N. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness, Rapid Prototyping Journal 2015; 21(3): 250–261.
  • 20. Moore J.P., Williams C.B. Fatigue properties of parts printed by polyjet material jetting, Rapid Prototyping Journal 2015; 21(6): 675–685.
  • 21. Koteras R., Wieczorowski M., Znaniecki P., Swojak N. Measurement strategy as a determinant of the measurement uncertainty of an optical scanner, Archives of Mechanical Technology and Materials 2019; 39(1): 26–31.
  • 22. Wieczorowski M., Yago I.P., Pereira D.A., Gapiński B., Budzik G., Diering M. Comparison of Measurements Realized on Computed Tomograph and Optical Scanners for Elements Manufactured by Wire Arc Additive Manufacturing, Advances in Manufacturing III: Volume 4 - Measurement and Control Systems: Research and Technology Innovations, Industry 4.0, Switzerland: Springer 2022; 127–141.
  • 23. Guerra M.G., Volpone C., Galantucci L.M., Percoco G. Photogrammetric measurements of 3D printed microfluidic devices, Additive Manufacturing 2018; 21: 53–62.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54c597be-fc4e-4f5d-89bb-4d8c53922ad5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.