PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Review, design, stabilization and synchronization of fractional-order energy resources demand-supply hyperchaotic systems using fractional-order PD-based feedback control scheme

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces a fractional-order PD approach (F-oPD) designed to control a large class of dynamical systems known as fractional-order chaotic systems (F-oCSs). The design process involves formulating an optimization problem to determine the parameters of the developed controller while satisfying the desired performance criteria. The stability of the control loop is initially assessed using the Lyapunov’s direct method and the latest stability assumptions for fractional-order systems. Additionally, an optimization algorithm inspired by the flight skills and foraging behavior of hummingbirds, known as the Artificial Hummingbird Algorithm (AHA), is employed as a tool for optimization. To evaluate the effectiveness of the proposed design approach, the fractional-order energy resources demand-supply (Fo-ERDS) hyperchaotic system is utilized as an illustrative example.
Rocznik
Strony
539--563
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wzory
Twórcy
  • Renewable Energy Laboratory, Faculty of Science and Technology, Department of Electronics, University of MSBY Jijel, BP. 98, Ouled Aissa, Jijel, Algeria
  • Research Center in Industrial Technologies CRTI, P. O. Box. 64, Cheraga 16014, Algiers, Algeria
  • Renewable Energy Laboratory, Faculty of Science and Technology, Department of Electronics, University of MSBY Jijel, BP. 98, Ouled Aissa, Jijel, Algeria
  • Physics Department, Faculty of Science, Islamic University of Madinah, Madinah, KSA
  • Modeling, Information and Systems Laboratory, University of Picardie Jules Verne, Amiens, France
Bibliografia
  • [1] A.K. Jonscher: Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32(14), (1999), 57-70. DOI: 10.1088/0022-3727/32/14/201.
  • [2] S. Westerlund and L. Ekstam: Capacitor Theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1(5), (1994), 826-839. DOI: 10.1109/94.326654.
  • [3] J.A. Tenreiro Machado and A.M.S.F. Galhano: Fractional order inductive phenomena based on the skin effect. Nonlinear Dynamics, 68(1-2), (2012), 107-115. DOI: 10.1007/s11071-011-0207-z.
  • [4] I.S. Jesus and J.A. Tenreiro Machado: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dynamics, 56(1-2), (2009), 45-55. DOI: 10.1007/s11071-008-9377-8.
  • [5] I. Petráş: Fractional-order nonlinear systems: Modeling, analysis and simulation. Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-18101-6.
  • [6] N. Bertrand, J. Sabatier, O. Briat and J. Vinassa: Fractional non-linear modelling of ultracapacitors. Communications in Nonlinear Science and Numerical Simulation, 15(5), (2010), 1327-1337. DOI: 10.1016/j.cnsns.2009.05.066.
  • [7] S. Fang and X. Wang: Modeling and analysis method of fractional-order buck-boost converter. International Journal of Circuit Theory and Applications, 48(9), (2020), 493-510. DOI: 10.1002/cta.2840.
  • [8] A.G. Radwan, A.A.Emira, A.M. AbdelAty and A.T. Azar: Modeling and analysis of fractional order DC-DC converter. ISA Transactions, 82 (2018), 184-199. DOI: 10.1016/j.isatra.2017.06.024.
  • [9] X. Chen, Y. Chen, B. Zhang and D. Qiu: A modeling and analysis method for fractional-order DC-DC converters. IEEE Transactions on Power Electronics, 32(9), (2017), 7034-7044. DOI: 10.1109/TPEL.2016.2628783.
  • [10] Y. Ning-Ning, L. Chong-Xin and W. Chao-Jun: Modeling and dynamic analysis of the fractional-order Buck-Boost converter in continues conduction mode. Chinese Physical Society, 21(8), (2012), 1-7. DOI: 10.1088/1674-1056/21/8/080503.
  • [11] F. Wang and X. Ma: Modeling and analysis of the fractional order buck converter in DCM operation by using fractional calculus and the circuit-averaging technique. Journal of Power Electronics, 13(6), (2013), 1008-1015. DOI: 10.6113/JPE.2013.13.6.1008.
  • [12] A.M. Movahhed, H.T. Shandiz and S.K.H. Sani: Comparison of fractional order modelling and integer order modelling of fractional order buck converter in continuous condition mode operation. Power Engineering and Electrical Engineering, 14(5), (2016), 531-542. DOI: 10.15598/aeee.v14i5.1635.
  • [13] W. Mitkowski, M. Długosz and P. Skruch: Selected engineering applications of fractional-order calculus. In: P. Kulczycki, J. Korbicz and J. Kacprzyk, (eds.), Fractional Dynamical Systems: Methods, Algorithms and Applications. Studies in Systems, Decision and Control, 402 Springer, Cham, 2022. DOI: 10.1007/978-3-030-89972-1_12.
  • [14] I. Podlubny: Fractional differential equations. New York: Academic Press, 1999.
  • [15] A. Oustaloup: La Dérivation non entière. Hermès, Paris 1991. In French.
  • [16] A. Soukkou, M.C. Belhour and S. Leulmi: Review, design, optimisation and stability analysis of fractional-order PID controller. International Journal of Intelligent Systems and Applications, 8(7), (2016), 73-96. DOI: 10.5815/ijisa.2016.07.08.
  • [17] H. Zhu, S. Zhou and J. Zhang: Chaos and synchronization of the fractional-order Chua’s system. Chaos, Solitons and Fractals, 39(4), (2009), 1595-1603. DOI: 10.1016/j.chaos.2007.06.082.
  • [18] K. Diethelm, N.J. Ford and A.D. Freed: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29(1), (2002), 3-22. DOI: 10.1023/A:1016592219341.
  • [19] E. Demirci and N. Ozalp: A method for solving differential equations of fractional order. Journal of Computational and Applied Mathematics, 236(11), (2012), 2754-2762. DOI: 10.1016/j.cam.2012.01.005.
  • [20] L. Chen, W. Pan, K. Wang, R. Wu, J.A. Tenreiro Machado and A.M. Lopes: Generation of a family of fractional order hyper-chaotic multi-scroll attractors. Chaos, Solitons & Fractals, 105 (2017), 244-255. DOI: 10.1016/j.chaos.2017.10.032.
  • [21] T.C. Lin and T.Y. Lee: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Transactions on Fuzzy Systems, 19(4), (2011), 623-635. DOI: 10.1109/TFUZZ.2011.2127482.
  • [22] Z. Gao and X. Liao: Discretization algorithm for fractional order integral by Haar wavelet approximation. Applied Mathematics and Computation, 218(5), (2011), 1917-1926. DOI: 10.1016/j.amc.2011.07.003.
  • [23] A.K. Mani and M.D. Narayanan: Analytical and numerical solution of ann-term fractional nonlinear dynamic oscillator. Nonlinear Dynamics, 100, (2020), 999-1012. DOI: 10.1007/s11071-020-05539-0.
  • [24] A.H. Bukhari, M.A. Zahoor Raja, N. Rafiq, M. Shoaib, A.K. Kiani and Ch-M. Shu: Design of intelligent computing networks for nonlinear chaotic fractional Rossler system. Chaos, Solitons and Fractals, 157 (2022), 111985. DOI: 10.1016/j.chaos.2022.111985.
  • [25] Y. Wang, L. Zhu and Z. Wang: Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. Advances in Difference Equations, 254 (2018), 1-13. DOI: 10.1186/s13662-018-1699-3.
  • [26] M.M. Khader: Generalized fractional-order Legendre polynomials and its treatment for solving system of FDEs. Indian Journal of Physics, 96 (2022), 3239-3246. DOI: 10.1007/s12648-021-02264-1.
  • [27] F.A. Shah and M. Irfan: Generalized wavelet method for solving non-steady heat transfer model of fractional order. SeMA Journal, 78 (2021), 541-556. DOI: 10.1007/s40324-021-00248-z.
  • [28] H. Hassani, J.A. Tenreiro Machado, E. Naraghirad and B. Sadeghi: Solving nonlinear systems of fractional-order partial differential equations using an optimization technique based on generalized polynomials. Computational and Applied Mathematics, 39(300), (2020), 1-19. DOI: 10.1007/s40314-020-01362-w.
  • [29] W. Beghami, B. Maayah, S. Bushnaq and O. Abu Arqub: The Laplace optimized decomposition method for solving systems of partial differentia equations of fractional order. International Journal of Applied and Computational Mathematics, 8(52), (2022), 1-18. DOI: 10.1007/s40819-022-01256-x.
  • [30] M.S. Tavazoei: Fractional order chaotic systems: history, achievements, applications, and future challenges. European Physics Journal, 229 (2020), 887-904. DOI: 10.1140/epjst/e2020-900238-8.
  • [31] M.A. Balootaki, H. Rahmani, H. Moeinkhah and A. Mohammadzadeh: On the synchronization and stabilization of fractional-order chaotic systems: Recent advances and future perspectives. Physica A: Statistical Mechanics and its Applications, 551(2), (2020), 124203. DOI: 10.1016/j.physa.2020.124203.
  • [32] A. Oustaloup: La Commande CRONE: Commande Robuste d’Ordre Non Entier. Editions Hermès, Paris, 1991. In French.
  • [33] I. Podlubny: Fractional-order systems and PI𝜆D𝜇 controllers. IEEE Transactions on Automatic Control, 44(1), (1999), 208-214. DOI: 10.1109/9.739144.
  • [34] M.S. Tavazoei and M. Haeri: Chaotic attractors in incommensurate fractional order systems. Physica D: Nonlinear Phenomena, 237(20), (2008), 2628-2637. DOI: 10.1016/j.physd.2008.03.037.
  • [35] X. Zhang, X. Zhang, D. Li and D. Yang: Adaptive synchronization for a class of fractional order time-delay uncertain chaotic systems via fuzzy fractional order neural network. International Journal of Control, Automation and Systems, 17(5), (2019), 1209-1220. DOI: 10.1007/s12555-018-0342-0.
  • [36] A. Soukkou, A. Boukabou and S. Leulmi: Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems. Nonlinear Dynamics, 85(4), (2016), 2183-2206. DOI: 10.1007/s11071-016-2823-0.
  • [37] A. Soukkou, A. Boukabou and S. Leulmi: Design and optimization of generalized prediction-based control scheme to stabilize and synchronize fractional-order hyperchaotic systems. International Journal for Light and Electron Optics, 127(12), (2016), 5070-5077. DOI: 10.1016/j.ijleo.2016.02.044.
  • [38] A. Soukkou and S. Leulmi: Controlling and synchronizing of fractional-order chaotic systems via simple and optimal fractional-order feedback controller. International Journal of Intelligent Systems and Applications, 8(6), (2016), 56-69. DOI: 10.5815/ijisa.2016.06.0.
  • [39] A. Soukkou and S. Leulmi: Elaboration of a generalized approach to control and to synchronize the fractional-order chaotic systems. International Journal of General Systems, 46(8), (2017), 853-878. DOI: 10.1080/03081079.2017.1324854.
  • [40] A. Soukkou, A. Boukabou and A. Goutas: Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems. International Journal of General Systems, 47(7), (2018), 679-713. DOI: 10.1080/03081079.2018.1512601.
  • [41] S.M. Abedi Pahnehkolaei, A. Alfi and J.A. Tenreiro Machado: Fuzzy logic embedding of fractional order sliding mode and state feedback controllers for synchronization of uncertain fractional chaotic systems. Computational and Applied Mathematics, 39(182), (2020), 1-16. DOI: 10.1007/s40314-020-01206-7.
  • [42] L.M. Martinez-Patiño, F.J. Perez-Pinal and A.G.S. Sánchez: Comparison between discretization techniques on HIL fractional-order controllers. 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Anaheim, CA, USA, (2022), 467-472. DOI: 10.1109/ITEC53557.2022.9814049.
  • [43] J.C. Trigeassou and N. Maamri: Analysis, modeling and stability of fractional order differential systems 1: The infinite state approach. Wiley Publisher, August 2019.
  • [44] S. Huang and B. Wang: Stability and stabilization of a class of fractional-ordernonlinear systems for 0<𝛼<2. Nonlinear Dynamics, 88 (2017), 973-984. DOI: 10.1007/s11071-016-3288-x.
  • [45] B.K. Lenka and S. Banerjee: Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 365-379. DOI: 10.1016/j.cnsns.2017.08.005.
  • [46] B.K. Lenka and S.N. Bora: New global asymptotic stability conditions for a class of nonlinear time-varying fractional systems. European Journal of Control, 63 (2022), 97-106. DOI: 10.1016/j.ejcon.2021.09.008.
  • [47] Z. Zhang, Y. Wang, J. Zhang, Z. Ai and F. Liu: Novel stability results of multivariable fractional-order system with time delay. Chaos, Solitons and Fractals, 157 (2022), 111943. DOI: 10.1016/j.chaos.2022.111943.
  • [48] V. K. Yadav, V.K. Shukla and S. Das: Exponential synchronization of fractional-order complex chaotic systems and its application. Chaos, Solitons & Fractals, 147 (2021), 110937. DOI: 10.1016/j.chaos.2021.110937.
  • [49] B. Zhang and X. Shu: Fractional-order electrical circuit theory. CPSS Power Electronics Series, 2022. DOI: 10.1007/978-981-16-2822-1.
  • [50] E. Tlelo-Cuautle, A.D. Pano-Azucena, O. Guillén-Fernández and A. Silva-Juárez: Analog/Digital implementation of fractional order chaotic circuits and applications. Springer Nature Switzerland AG, 2020. DOI: 10.1007/978-3-030-31250-3.
  • [51] J. Yao, K. Wang, P. Huang, L. Chen and J.A. Tenreiro Machado: Analysis and implementation of fractional-order chaotic system with standard components. Journal of Advanced Research, 25 (2020), 97-109. DOI: 10.1016/j.jare.2020.05.008.
  • [52] M.F. Tolba, H. Saleh, B. Mohammad, M. Al-Qutayri, A.S. Elwakil and A.G. Radwan: Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system. Nonlinear Dynamics, 99 (2020), 3143-3154. DOI: 10.1007/s11071-019-05449-w.
  • [53] M. Wang: Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors. Chaos, Solitons & Fractals, 130 (2020), 109406. DOI: 10.1016/j.chaos.2019.109406.
  • [54] Y. Wei, Q. Gao, Y. Chen and Y. Wang: Design and implementation of fractional differentiators, Part I: System based methods. Control Engineering Practice, 84 (2019), 297-304. DOI: 10.1016/j.conengprac.2018.12.008.
  • [55] A. Soukkou and A. Boukabou: Advanced Design of Fractional-order Controllers: Design and Optimization of Generalized PD-based Control Scheme to Stabilize and to Synchronize Fractional-order Hyperchaotic Systems. In Advanced synchronization control and bifurcation of chaotic fractional-order systems, IGI Global Publischer, Hershey PA, USA 17033, 2018, 305-332. DOI: 10.4018/978-1-5225-5418-9.ch011.
  • [56] M.A. Duarte-Mermoud, A. Aguila-Camacho, J.A. Gallegos and R. Castro-Linares: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), (2015), 650-659. DOI: 10.1016/j.cnsns.2014.10.008.
  • [57] Y. Li, Y.Q. Chen and I. Podlubny: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers & Mathematics with Applications, 59(5), (2010), 1810-1821. DOI: 10.1016/j.camwa.2009.08.019.
  • [58] W. Zhao, L. Wang and S. Mirjalili: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering, 388 (2022), 1-13. DOI: 10.1016/j.cma.2021.114194.
  • [59] U.M. Diwekar: Introduction to applied optimization. Springer Cham, 2020. DOI: 10.1007/978-3-030-55404-0.
  • [60] M. Sun, L. Tian and Y. Fu: An energy resources demand-supply system and its dynamical analysis. Chaos, Solitons & Fractals, 32(1), (2007), 168-180. DOI: 10.1016/j.chaos.2005.10.085.
  • [61] M. Sun, L. Tian and Y. Fu: A new four-dimensional energy resources system and its linear feedback control. Chaos, Solitons & Fractals, 39(1), (2009), 101-108. DOI: 10.1016/j.chaos.2007.01.125.
  • [62] B. Xin, T. Chen and Y. Liu: Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. Communications in Nonlinear Science and Numerical Simulation, 16(11), (2011), 4479-4486. DOI: 10.1016/j.cnsns.2011.01.021.
  • [63] S. Lavanya, C. Pradeep and S. Nagarani: Projective synchronization of fractional-order chaotic energy resource systems via linear control based on Takagi-Sugeno fuzzy model. AIP Conference Proceedings, 2261 (2020), 030127. DOI: 10.1063/5.0017268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54c119eb-e88f-483c-99ba-ae74bcc726b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.