PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Different Plant Monocultures on Nitrogen Removal Performance in Wetland Microcosms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the nitrogen removal performance in wetland microcosms individually planted with different plant monocultures, including emergent, free-floating and submerged plants during ammonia removals, or large- and small-leaf free-floating plants during nitrate removal. For ammonia-dominated wastewater, both emergent (common reed) and free-floating (water hyacinth) plants in wetland microcosms achieved higher total nitrogen removals than a submerged plant (eelgrass) that significantly improved the microbial nitrifying performance. For nitrate-dominated wastewater, efficient nitrate removals in wetland microcosms planted with free-floating plant were achieved by both a full cover of water surface and the concentration of organic oxygen-consuming substances, which resulted in low dissolved oxygen levels and boosted microbial denitrification in wetland microcosms. FWS-CW developers and managers should thus pay close attention to the selection of wetland plant types and optimize their design to achieve optimum nitrogen removal performance.
Rocznik
Strony
241--249
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • China Academy of Transportation Sciences, Beijing, 100029, China
autor
  • MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
  • MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
autor
  • Beijing Municipal Ecological Environment Appraisal and Complaint Center, Beijing, 100161, China
Bibliografia
  • 1. Bachand P.A.M., Horne A.J. 2000. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecological Engineering, 14(1–2), 17–32.
  • 2. Batty L.C., Baker A.J.M., Wheeler B.D. 2006. The effect of vegetation on porewater composition in a natural wetland receiving acid mine drainage. Wetlands, 26(1), 40–48.
  • 3. Bezbaruah A.N., Zhang T.C. 2005. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnology And Bioengineering, 89(3), 308–318.
  • 4. Chen H.J. 2011. Surface-Flow Constructed Treatment Wetlands for Pollutant Removal: Applications and Perspectives. Wetlands, 31(4), 805–814.
  • 5. Gao Y., Yan C., Wei R.P., Zhang W., Shen J.N., Wang M.X., Gao B., Yang Y.C., Yang L.Y. 2019. Photovoltaic electrolysis improves nitrogen and phosphorus removals of biochar-amended constructed wetlands. Ecological Engineering, 138, 71–78.
  • 6. Garcia-Lledo A., Ruiz-Rueda O., Vilar-Sanz A., Sala L. and Baneras L. 2011. Nitrogen removal efficiencies in a free water surface constructed wetland in relation to plant coverage. Ecological Engineering, 37(5), 678–684.
  • 7. Guo C.Q., Cui Y.L., Dong B., Luo Y.F., Liu F.P., Zhao S.J., Wu H.R. 2017. Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland. Bioresource Technology, 238, 461–471.
  • 8. Huett D.O., Morris S.G., Smith G., Hunt N. 2005. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Research, 39(14), 3259–3272.
  • 9. Jain M., Majumder A., Ghosal P.S., Gupta A.K. 2020. A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272.
  • 10. Jampeetong A., Brix H., Kantawanichkul S. 2012. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aquatic Botany, 97(1), 10–16.
  • 11. Jansson M., Rune A., Hans B., Leonardson L. 1994. Wetlands and Lakes as Nitrogen Traps. Ambio, 23(6), 320–325.
  • 12. Kadlec R.H. 2006. Water temperature and evapotranspiration in surface flow wetlands in hot and climate. Ecological Engineering, 26(4), 328–340.
  • 13. Kadlec R.H. 2008. The effects of wetland vegetation and morphology on nitrogen processing. Ecological Engineering, 33(2), 126–141.
  • 14. Kalengo L., Ge H.L., Liu N.N., Wang Z.J. 2021. The Efficiency of Aquatic Macrophytes on the Nitrogen and Phosphorous Uptake from Pond Effluents in Different Seasons. Journal of Ecological Engineering, 22(8), 75–85.
  • 15. Kirzhner F., Zimmels Y., Gafni A. 2008. Effect of evapotranspiration on the salinity of wastewater treated by aquatic plants. Reviews on environmental health, 23(2), 149–166.
  • 16. Li K.Y., Liu Z.W., Gu B.H. 2010. Compensatory growth of a submerged macrophyte (Vallisneria spiralis) in response to partial leaf removal: effects of sediment nutrient levels. Aquatic Ecology, 44(4), 701–707.
  • 17. Li X., Li Y.Y., Lv D.Q., Li Y., Wu J.S. 2020. Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. Science of the Total Environment, 709.
  • 18. Lin Y.F., Jing S.R., Wang T.W., Lee D.Y. 2002. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution, 119(3), 413–420.
  • 19. Malschi D., Muntean L., Oprea I., Roba C., Popita G., Stefanescu L., Florian B.M., Rinba E. 2018. Research on wastewaters bioremediation with aquatic species for constructed wetlands. Environmental Engineering And Management Journal, 17(7), 1753–1764.
  • 20. Nahlik A.M., Mitsch W.J. 2006. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28(3), 246–257.
  • 21. Racchetti E., Bartoli M., Ribaudo C., Longhi D., Brito L.E.Q., Naldi M., Iacumin P., Viaroli P. 2010. Short term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia, 652(1), 127–137.
  • 22. Ruan W.F., Cai H.B., Xu X.M., Man Y., Wang R., Tai Y.P., Chen Z.B., Vymazal J., Chen J.X., Yang Y., Zhang X.M. 2021. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands: A field-scale study in a frost-free area. Science of the Total Environment, 799.
  • 23. Shammas N.K. 1986. Interactions of temperature, ph, and biomass on the nitrification process. Journal Water Pollution Control Federation, 58(1), 52–59.
  • 24. Shukla A., Parde D., Gupta V., Vijay R., Kumar R. 2021. A review on effective design processes of constructed wetlands. International Journal of Environmental Science and Technology (prepublish).
  • 25. Sooknah R.D., Wilkie A.C. 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22(1), 27–42.
  • 26. Toet S., Van Logtestijn R.S.P., Schreijer M., Kampf R., Verhoeven J.T.A. 2005. The functioning of a wetland system used for polishing effluent from a sewage treatment plant. Ecological Engineering, 25(1), 101–124.
  • 27. Vander Meulen I.J., Schock D.M., Parrott J.L., Simair M.C., Mundy L.J., Ajaero C., Pauli B.D., Peru K.M., McMartin D.W., Headley J.V. 2022. Transformation of bitumen-derived naphthenic acid fraction compounds across surface waters of wetlands in the Athabasca Oil Sands region. Science of the Total Environment, 806.
  • 28. Veraart A.J., de Bruijne W.J.J., de Klein J.J.M., Peeters E., Scheffer M. 2011. Effects of aquatic vegetation type on denitrification. Biogeochemistry, 104(1–3), 267–274.
  • 29. Vymazal J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65.
  • 30. Wang J.W., Yu D. 2007. Influence of sediment fertility on morphological variability of Vallisneria spiralis L. Aquatic Botany, 87(2), 127–133.
  • 31. Weisner S.E.B., Thiere G. 2010. Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: a test of the biodiversity-ecosystem functioning hypothesis. Freshwater Biology, 55(2), 387–396.
  • 32. Wirsel S.G.R. 2004. Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. Fems Microbiology Ecology, 48(2), 129–138.
  • 33. Xuegong X.U., Shaw L.Y., Zhihuan Z., Qiaoling D.U., Lisheng H.O.U., Huiping L.I.N., Daojun W., Jenny X.Z., Wenzheng L.I.U., Qinghua Z. 2005. Simulation Study on the Impacts of Wetland States to Petroleum Pollution and Plant Growth. Acta Scientiarum Naturalium Universitatis Pekinensis, 41(6), 935–940.
  • 34. Yang Z.F., Zheng S.K., Chen J.J., Sun M. 2008. Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresource Technology, 99(17), 8049–8053.
  • 35. Zheng S.K., Yang Z.F., Sun M. 2010. Pollutant removal from municipal sewage in winter via a modified free-water-surface system planted with edible vegetable. Desalination, 250(1), 158–161.
  • 36. Zheng Y.C., Yang D., Dzakpasu M., Yang Q., Liu Y., Zhang H.F., Zhang L., Wang X.C.C., Zhao Y.Q. 2020. Effects of plants competition on critical bacteria selection and pollutants dynamics in a longterm polyculture constructed wetland. Bioresource Technology, 316.
  • 37. Zuo X.J., Zhang H.S., Yu J.H. 2020. Microbial diversity for the improvement of nitrogen removal in stormwater bioretention cells with three aquatic plants. Chemosphere, 244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54bd14bd-76e9-4094-9bea-cf1c6253c15e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.