PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a decision classifier tree to evaluate energy consumption of an electric vehicle under real traffic conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors of the study undertook work on the development of a decision tree-based classifier for the evaluation of energy consumption by a vehicle traveling in real traffic conditions during normal daily operation over a period of one full year. Parameters affecting the speed profile in the form of power pedal position, averaged ambient temperature and averaged vehicle speed were used as classification parameters.Since the energy consumption of an electric vehicle while moving in traffic depends on many factors. These factors include: the driver's driving style, as well as the prevailing weather conditions and terrain. An element of the driver's direct influence on the shape of the speed profile is the set position of the power pedal. The value of the power pedal position depends on the instantaneous load on the vehicle resulting from the terrain and the driver's adopted speed value. As a result, a power consumption rate can be obtained for the vehicle's moving conditions, for which the ambient temperature also has an influence.
Twórcy
  • Faculty of Production Engineering and Logistics, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Production Engineering and Logistics, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Mechanical Engineering, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Mechanical Engineering, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Mechanical Engineering, West Pomeranian University of Technology, Piastów 17, 70-310 Szczecin, Poland
Bibliografia
  • 1. Braun A., Rid W. Energy consumption of an electric and an internal combustion passenger car. A comparative case study from real world data on the Erfurt circuit in Germany. Transportation Research Procedia, 2017, 27, 468–475.
  • 2. Fiori C., Ahn K., Rakha H.A. Power-based electric vehicle energy consumption model: model development and validation. Applied Energy, 2016, 168, 257–68.
  • 3. Skuza A., Jurecki R.S. Analysis of factors affecting the energy consumption of an EV vehicle - a literature study. IOP Conf. Series: Materials Science and Engineering, 2022, 1247, 012001. https://doi.org/10.1088/1757-899X/1247/1/012001
  • 4. European Environment Agency. New registrations of electric vehicles in Europe 2021. Available on-line: https://www.eea.europa.eu/ims/new-registrations-of-electric-vehicles
  • 5. Achariyaviriya W., Wongsapai W., Janpoom K., Katongtung T., Mona Y., Tippayawong N., Suttakul P. Estimating energy consumption of battery electric vehicles using vehicle sensor data and machine learning approaches. Energies, 2023, 16(6351). https://doi.org/10.3390/en16176351
  • 6. Pielecha A., Pielecha J. Simulation analysis of electric vehicles energy consumption in driving tests. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2020, 22(1), 130–137. https://doi.org/10.17531/ein.2020.1.15
  • 7. Modi S., Bhattacharaya J., Basak P. Estimation of energy consumption of electric vehicles using Deep Convolutional Neural Network to reduce driver’s range anxiety. ISA Transactions, 2020, 98, 454–70.
  • 8. Kondo Y., Kato H., Ando R., Suzuki T., Karakama Y. To what extent can Speer management alleviate the range anxiety of EV? World Electric Vehicle Symposium and Exhibition (EVS27), 2013.
  • 9. Muratori M., Moran M.J., Serra E., Rizzoni G. Highly-resolved modeling of personal transportation energy consumption in the United States. Energy, 2013, 58, 168–77.
  • 10. Qi X., Wu G., Boriboonsomsin K., Barth M. J. Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions. Transportation Research Part D: Transport and Environment, 2018, 64, 36–52.
  • 11. Szumska E., Jurecki S. The effect of aggressive driving on vehicle parameters. Energies, 2020, 13(24), 6675.
  • 12. Wahono B., Santoso W. B., Nur A., Amin. Analysis of range extender electric vehicle performance using vehicle simulator. Energy Procedia, 2015, 68, 409–18.
  • 13. Wager G., Whale J., Braunl T. Driving electric vehicles at highway speeds: the effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia. Renewable and Sustainable Energy Reviews, 2016, 63, 158–65.
  • 14. Mamala J., Graba M., Mitrovic J., Prażnowski K., Stasiak P. Analysis of speed limit and energy consumption in electric vehicles. Combustion Engines, 2023, 195(4), 83–89. https://doi.org/10.19206/CE-169370
  • 15. Biswas N. n.: Computer Aided Minimization Procedure for Boolean functions. IEEE Trans, Comp. Aided Design of Integrated Circuits and Systems, CAD-5, 1986, 2, 303–304.
  • 16. Partyka M. A. Logic of multivalued decision processes (Logika wielowartościowych procesów decyzyjnych). Wydawnictwo Naukowo-Techniczne, Warszawa, 2002.
  • 17. Deptuła A., Partyka M. A. Separate logical analysis of design guidelines in the machine systems modelling. Int. J. Appl. Mech. Eng., 2012, 17(3), 779–790.
  • 18. Deptuła A. Application of graphical decision structures in design and management methodology. Vol. 3: Parametric playing graphs and multivalued logical decision trees in planetary gear analysis (Zastosowanie graficznych struktur decyzyjnych w metodologii projektowania i zarządzania. T. 3: Grafy rozgrywające parametrycznie i decyzyjne wielowartościowe drzewa logiczne w analizie przekładni planetarnych). Studia i Monografie / Politechnika Opolska, Vol. 539, Politechnika Opolska, 2020.
  • 19. Deptuła A., Partyka M. A. Application of game graphs in optimization of dynamic system structures. International Journal of Applied Mechanics and Engineering, 2010, 15(3), 647–656.
  • 20. Deptuła A. Logiczna ocena zmian parametrów konstrukcyjnych dla modelowania własności dynamicznych, XXXIX Konf. Zast. Mat., Zakopane 2010, Inst. Mat. PAN, Warszawa 2010.
  • 21. Deptuła A., Partyka M. A. Separate logical analysis of design guidelines in the machine systems modelling. International Journal of Applied Mechanics and Engineering, 2012, 17(3), 779–790.
  • 22. Agrawal, G. L., and H. Gupta. Optimization of C4.5 Decision Tree Algorithm for Data Mining Application. International Journal of Emerging Technology and Advanced Engineering, 2013, 3(3), 341–45.
  • 23. Dai, W., and W. Ji. A mapreduce implementation of C4.5 Decision Tree Algorithm. International Journal of Database Theory and Application, 2014, 7(1), 49–60.
  • 24. Mucherino, A., Papajorgji, P.J., Pardalos, P.M. k-Nearest Neighbor Classification. In: Data Mining in Agriculture. Springer Optimization and Its Applications, vol 34. Springer, New York, NY, 2009. https://doi.org/10.1007/978-0-387-88615-2_4
  • 25. Chen L., Lu L., Feng K., Li W., Song J., Zheng L., Yuan Y., Zeng Z., Feng K., Lu W., Cai Y. Multiple classifier integration for the prediction of protein structural classes. J Comput Chem., 2009 Nov 15, 30(14), 2248–54. https://doi.org/10.1002/jcc.21230. PMID: 19274708
  • 26. Marler, R. T., & Arora, J. S. Function-transformation methods for multi-objective optimization. Engineering Optimization, 2005, 37(6), 551–570. https://doi.org/10.1080/03052150500114289
  • 27. Koski, J. Multicriterion optimization in structural design. In New Directions in Optimum Structural Design, Edited by: Atrek, E., Gallagher, R. H., Ragsdell, K. M. and Zienkiewicz, O. C. 1984, 485–503. New York: John Wiley and Sons.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54b98c57-efe3-4d90-8d4a-bd2416904e97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.