PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of nitrogen multi-energy ion implantation into WC-Co indexable knives for wood-based materials machining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cutting forces during drilling and selected physical and mechanical properties of the finish coating based on epoxy resin. Paper presents selected tests of epoxy resin coating applied to American walnut wood (Juglans nigra L.). The aim of the study was to assess the machinability of wood flooded with resin during drilling. The axial forces and torque values were adopted for the machinability criteria. The idea of the research was the thesis questioning the possibility of processing epoxy resin coatings with the application of tools and parameters used during wood processing. In addition, the influence of UV light on the obtained coating was examined and abrasion tests were carried out. It was found the resin changes its colour under the influence of UV radiation, but the change is imperceptible to an average observer. Epoxy resin is characterized by low abrasion resistance compared to commonly used paint and varnish coatings. Although solid resin is characterized by high cutting resistance while drilling, the force values do not exceed the commonly cut wood-based materials.
PL
Siły skrawania podczas wiercenia oraz wybrane właściwości fizyko-mechaniczne powłoki wykończeniowej na bazie żywicy epoksydowej. W pracy przedstawiono wybrane badania powłoki z żywicy epoksydowej naniesionej na drewno orzecha amerykańskiego (Juglans nigra L.) Celem pracy była ocena skrawalności żywicy epoksydowej oraz drewna pokrytego żywicą epoksydową podczas wiercenia. Za kryterium skrawalności przyjęto wartości siły osiowej oraz momentu obrotowego. Genezą badań była teza stawiająca pod znakiem zapytania możliwość obróbki powłok z żywicy epoksydowej przy pomocy narzędzi i parametrów stosowanych podczas obróbki drewna. Ponadto zbadano wpływ światła UV na uzyskaną powłokę oraz przeprowadzono badania ścieralności. W wyniku badań stwierdzono, że pod wpływem promieniowania UV żywica zmienia swoją barwę, jednak zmiana jest niezauważalna dla przeciętnego obserwatora. Żywica epoksydowa charakteryzuje się niską odpornością na ścieranie w odniesieniu do powszechnie stosowanych powłok malarsko lakierniczych. Mimo iż lita żywica epoksydowa charakteryzuje się wysokimi wartościami siły osiowej i momentu obrotowego podczas wiercenia, jednak wartości sił nie wykraczają poza powszechnie skrawane materiały drewnopochodne.
Słowa kluczowe
Twórcy
autor
  • PlasmaIon Beam Technology Division (FM2), National Centre for Nuclear Research Świerk – NCBJ
  • Warsaw University of Life Sciences – SGGW, Institute of Wood Sciences and Furniture, Department of Mechanical Processing of Wood
  • Plasma/Ion Beam Technology Division (FM2), National Centre for Nuclear Research Świerk – NCBJ
Bibliografia
  • 1. ARAI N., TSUJI H., NAKATSUKA H., KOJIMA K., ADACHI K., KOTAKI H., ISHIBASHI T., GOTOH Y., ISHIKAWA J., 2008: Germanium nanoparticles formation in silicon dioxide layer by multi-energy implantation of Ge negative ions and their photo-luminescence, Materials Science and Engineering B 147, 230–234.
  • 2. BARLAK M., WILKOWSKI J., WERNER Z., 2016: Ion implantation changes of tribological and corrosion resistance properties of materials used in wood industry, Annals of Warsaw University of Life Science – SGGW, Forestry and Wood Technology 94, 19–27.
  • 3. BARLAK M., WILKOWSKI J., BORUSZEWSKI P., WERNER Z., PAŁUBICKI B., 2017: Changes of functional properties of materials used in wood industry after ion implantation processes, Annals of Warsaw University of Life Science – SGGW, Forestry and Wood Technology 97, 133–139.
  • 4. BARLAK M., WILKOWSKI J., WERNER Z., 2019a: Modelling of the ion implantation modification of WC-Co indexable knives for wood machining, Annals of Warsaw University of Life Science – SGGW, Forestry and Wood Technology 106, 57–61.
  • 5. BARLAK M., WILKOWSKI J., SZYMANOWSKI K., CZARNIAK P., PODZIEWSKI P., WERNER Z., ZAGÓRSKI J., STASZKIEWICZ B., 2019b: Influence of the ion implantation of nitrogen and selected metals on the lifetime of WC-Co indexable knives during MDF machining, Annals of Warsaw University of Life Science – SGGW, Forestry and Wood Technology 108, 45–52.
  • 6. BARLAK M., WILKOWSKI J., WERNER Z., 2019c: Modelling of nitrogen implantation processes into WC-Co indexable knives for wood-based material machining using ion implanters with or without direct ion beam, Annals of Warsaw University of Life Science – SGGW, Forestry and Wood Technology 108, 68–78.
  • 7. BARLAK M., WILKOWSKI J., WERNER Z., 2019d: The selected problems of the modelling of the depth profiles of the elements implanted to the tools used in wood material machining, Biuletyn Informacyjny OB-RPPD 3-4, 118–134, in Polish.
  • 8. BECERRA H.M., Gloria V.V., LIZÁRRAGA-MEDINA E.G., RANGEL-ROJO R., SALAZAR D., OLIVER A., 2017: Development of optical waveguides through multiple-energy ion implantations, Ion Implantation - Research and Application 101–123.
  • 9. BONNY K., DE BAETS P., PEREZ Y., VLEUGELS J., LAUWERS B., 2010: Friction and wear characteristics of WC-Co cemented carbides in dry reciprocating sliding contact, Wear 268, 1504–1517.
  • 10. CHEN H.-Y., LIN Y.-S., 2019: Enhancement of second-harmonic generation in thermally poled fused silica by multi-energy argon ion implantation, Optical Materials 95, 109217.
  • 11. CHOI S.-H., KANG S.-D., KWON Y.S., LIM S.G., CHO K.K., AHN I.-S., 2010: The effect of sintering conditions on the properties of WC-10wt%Co PIM compacts, Research on Chemical Intermediates 36, 743–748.
  • 12. DAVID M.L., RATCHENKOVA A., OLIVIERO E., DENANOT M.F., BEAUFORT M.F., DECLÉMY A., BLANCHARD C., GERASIMENKO N.N., BARBOT J.F., Radiation damage in He implanted silicon at high temperature using multi-energies, Nuclear Instruments and Methods in Physics Research B 198, 83–89.
  • 13. DENING W., WEIYUAN W., 1987: A study of multi-energy ion implantation, Journal of Electronics 4, 39-45.
  • Google Scholar
  • 14. FAYEULLE S., TREHEUX D., GUIRALDENQ P., 1986: Nitrogen implantation in tungsten carbides, Journal of Materials Science 21, 1814–1818.
  • 15. FU G., WANG K.-M., WANG X.-L., LU F., LU Q.-M., SHEN D.-Y., MA H.-J., NIE R., 2007: Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal, Surface and Coatings Technology 201, 5427–5430.
  • 16. LAZAR M., LAARIEDH F., CREMILLIEU P., PLANSON D., LECLERCQ J.-L., 2015: The channelling effect of Al and N ion implantation in 4H–SiC during JFET integrated device processing, Nuclear Instruments and Methods in Physics Research B 365, 256–259.
  • 17. LIU X.-H., ZHAO J.-H., ZHANG S.-M., PENG B.-G., CHEN M., MING X.-B., MAC Y.-J., QIN X.-F., 2012: Damage behaviours in Nd:YVO4 by multi-energy proton implantation, Nuclear Instruments and Methods in Physics Research B 286, 213–217.
  • 18. LIU T., KONG W.-J., QIAO M., CHENG Y., 2018: Maintain Raman property in ZnS single crystal waveguide formed by multienergy He ion implantation at 633 nm, Results in Physics 11, 822-825.
  • 19. MAGRUDER III R.H., WELLER R.A., WEEKS R.A., WEHRMEYER J., ZUHR R.A., HENSLEY D.K., 2001: Effects of ArF excimer irradiation on single energy and multi energy Ge ion implanted silica, Journal of Non-Crystalline Solids 280, 169–176.
  • 20. MAGRUDER III R.H., WEEKS R.A., WELLER R.A., ZUHR R.A., 2002: Effects of multi-energy Si and O ion implantation on the optical properties of silica, Journal of Non-Crystalline Solids 304 224–232.
  • 21. MAGRUDER III R.H., WEEKS R.A., WELLER R.A., 2003: Luminescence and absorption in type III silica implanted with multi-energy Si, O and Ar ions, Journal of Non-Crystalline Solids 322, 58–67.
  • 22. MAGRUDER R.H., WEEKS R.A., WELLER R.A., GALYON R., 2004: Photoluminescence and absorption in multi-energy Ge implanted type III silica, Journal of Non-Crystalline Solids 345-346, 284–292.
  • 23. MAGRUDER III R.H., WEEKS R.A., MORIMOTO Y., 2011: Si related defects in the VUV in silicon multi-energy implanted type III silica, Nuclear Instruments and Methods in Physics Research B 269 2532–2538.
  • 24. MIKKELSEN N.J., PEDERSEN J., STRAEDE C.A., 2002: Ion implantation - the job coater’s supplement to coating techniques, Surface and Coatings Technology 158–159, 42–47.
  • 25. MILMAN. YU.V., CHUGUNOVA S., GONCHARUCK V., LUYCKX S., NORTHROP I.T., 1997: Low and high temperature hardness of WC-6 wt%Co alloys, International Journal of Refractory Metals and Hard Materials 15, 97–101.
  • 26. NAUMOVA O.V., ANTONOVA I.V., POPOV V.P., STAS V.F., 2003: Heterostructures formed on silicon by high-dose multi-energy hydrogen implantation, Microelectronic Engineering 66, 422–426.
  • 27. OLOVSJÖ S., JOHANSON R., FALSAFI F., BEXELL U., OLSSON M., 2013: Surface failure and wear of cemented carbide rock drill buttons - The importance of sample preparation and optimized microscopy settings, Wear 302, 1546–1554.
  • 28. PHELPS G.J., 2004: Dopant ion implantation simulations in 4H-silicon carbide, Modelling and Simulation in Materials Science and Engineering 12, 1139–1146.
  • 29. PIEKOSZEWSKI J., KEMPIŃSKI W., BARLAK M., WERNER Z., ŁOŚ S., ANDRZEJEWSKI B., STANKOWSKI J., PIEKARA-SADY L., SKŁADNIK-SADOWSKA E., SZYMCZYK W., KOLITSCH A., GRÖTZSCHEL R., STAROSTA W., SARTOWSKA B., 2009: Superconductivity of Mg–B layers prepared by a multi-energy implantation of boron into magnesium and magnesium into boron bulk substrates followed by the furnace and pulsed plasma annealing, Surface and Coatings Technology 203, 2694–2699.
  • 30. PIRSO J., LETUNOVITŠ S., VILJUS M., 2004: Friction and wear behaviour of cemented carbides, Wear 257, 257–265.
  • 31. POSSELT M., MÄDER M., LEBEDEV A., GRÖTZSCHEL R., 2005: Multiple implantations into Si: Influence of the implantation sequence on ion range profiles, Applied Physics Letters 87, 043109.
  • 32. RODRIGUEZ R.J., GARCIA J.A., SANCHEZ R., PEREZ A., GARRIDO B., MORANTE J., 2002: Modification of surface mechanical properties of polycarbonate by ion implantation, Surface and Coatings Technology 158–159, 636–642.
  • 33. SHEIKH-AHMAD J.Y., BAILEY J.A., 1999: High-temperature wear of cemented tungsten carbide tools while machining particleboard and fibreboard, Journal of Wood Science 45, 445-455.
  • 34. STRAEDE C.A., 1996: Application of ion implantation in tooling industry, Nuclear Instruments and Methods in Physics Research B 113, 161–166.
  • Google Scholar
  • 35. TERANISHI N., FUSE G., SUGITANI M., 2018: A review of ion implantation technology for image sensors, Sensors 18, 2358.
  • 36. TSUJI H., ARAI N., GOTOH N., MINOTANI T., KOJIMA K., ADACHI K., KOTAKI H., ISHIBASHI T., GOTOH Y., ISHIKAWA J., 2007: Germanium nanoparticles formed in silicon dioxide layer by multi-energy implantation and oxidation state of Ge atoms, Journal of Physics: Conference Series 61 1196–1201.
  • 37. WANG D., CHEN Z.Q., ZHOU F., LU W., MAEKAWA M., KAWASUSO A., 2009: Ferromagnetism and microstructure in Fe+-implanted ZnO, Applied Surface Science 255 9371–9375.
  • 38. WANG J., ZHANG X., FANG F., CHEN R., 2019: Diamond cutting of micro-structure array on brittle material assisted by multi-ion implantation, International Journal of Machine Tools and Manufacture 137, 58–66.
  • 39. WERNER Z., SZYMCZYK W., PIEKOSZEWSKI J., SEAH M.P., RATAJCZAK R., NOWICKI L., BARLAK M., RICHTER E., 2009: Stoichiometric MgB2 layers produced by multi-energy implantation of boron into magnesium, Surface and Coatings Technology 203, 2712–2716.
  • 40. ZHANG S.-M., CAI L.-T., LIU Q.-X., LIU X.-H., MING X.-B., 2013: Optical waveguide in stoichiometric lithium niobate by multi-low-energy helium ion implantation, Nuclear Instruments and Methods in Physics Research B 307, 438–441.
  • 41. ZHANG Z.J., NARAMOTO H., MIYASHITA A., STRITZKER B., LINDNER J.K.N., 1998: Low-temperature epitaxial growth of β-SiC by multiple-energy ion implantation, Physical Review B 58, 12652–12654.
  • 42. ZHAO J.-H., WANG X.-L., CHEN F., 2010: 1×4-Branch waveguide power splitters in lithium niobate by means of multi-energy O ion implantation, Optical Materials 32, 1441–1445.
  • 43. ZHAO J., YE L., LIU Y., LI S., FU G., YUE Q., 2019: Optical properties and surface blistering visualization on multiple-energy He-implanted Yb:YGG crystal by annealing treatment, Results in Physics 15, 102621.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54b5f99c-8fdd-4a0c-a23b-4c223ddbf90c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.