Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Groundwater recharge is essential for managing surface and subsoil water resources. Not only for supplying people with daily drinking water, groundwater use for agricultural land and people's livelihood is also continuously increasing. As a result, there has been a decline in groundwater supply in various parts of the world, and it is highly desirable to identify the potential groundwater zones for specific sustainable development. This study aims to use an easy-to-use tool package named Landslide Sustainability Mapping Tool pack (LSM tool Pack) for preparing potential groundwater zone based on R and ArcGIS software integration. This tool uses five modules for processing. Among them, the Feature selection (FS) module brings a novel approach, determining the best subset feature for demarcating the groundwater potential zone. As a result, this best factor subset is used as an input of this tool pack. Additionally, PE modules evaluate the performance of proposed models in statistical performance metrics. In addition, the receiver operating characteristic (ROC) curve was obtained with the integration of Performance Evaluation (PE) modules and ARC maps, which helps visual interpretation in evaluating models. This study uses the LSM tool Pack in the Rupnarayan river basin to map the potential groundwater zone based on fourteen controlling factors selected through the FS module, which will further help the local government to make a substitute policy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
433--448
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
- Department of Geography, Vidyasagar University, Midnapore, West Bengal, India
autor
- Department of Civil Engineering, Bangladesh Army International, University of Science and Technology, Cumilla, Bangladesh
autor
- Department of Geography, Vidyasagar University, Midnapore, West Bengal, India
Bibliografia
- 1. Arabameri A, Rezaei K, Cerda A, Lombardo L, RodrigoComino J (2019) GIS-based groundwater potential mapping in shahroud plain, Iran. a comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci Total Environ 658:160-177. https://doi.Org/10.1016/j.scitotenv.2018.12.115
- 2. Balbarini N, Bjerg PL, Binning PJ, Christiansen AV (2017) Modelling tools for integrating geological, geophysical and contamination data for characterization of groundwater plumes. In: Ph.D. Thesis, Department of Environmental Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark
- 3. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS, vol 3. Elsevier, UK
- 4. Breiman L (2001) Random Forests. Mach Learn 45(1):5-32
- 5. Chen W, Li H, Hou E, Wang S, Wang G, Peng T (2018) GIS based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ 634:853-867. https://doi.org/10.1016/j.scitotenv. 2018.04.055
- 6. Chen J, Dai Z, Yang Z, Pan Y, Zhang X, Wu J, Mr S (2021) An improved tandem neural network architecture for inverse modelling of multicomponent reactive transport in porous media. Water Resour Res. https://doi.org/10.1029/2021wr030595
- 7. Chen J, Dai Z, Dong S, Zhang X, Sun G, Wu J, Ershadnia R, Yin S, Soltanian Mr (2022) Integration of deep learning and information theory for designing monitoring networks in heterogeneous aquifer systems. Water Resour Res 58:e2022WR032429. https:// doi.org/10.1029/2022WR03242
- 8. Das S (2019) Comparison among Influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in vaitarna Basin, Maharashtra, India. Groundw Sustain Dev 8:617-629. https://doi.org/10.1016/j.gsd.2019.03.003
- 9. Edet AE, Okereke CS (1997) Assessment of hydrogeological conditions in basement aquifers of the Precambrian Oban massif, South-Eastern Nigeria. J Appl Geophys 36:195-204. https://doi. org/10.1016/S0926-9851(96)00049-3
- 10. Golkarian A, Naghibi SA, Kalantar B, Pradhan B (2018) Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monit Assess 190:1-16. https://doi.org/10.1007/s10661-6507-8
- 11. Guru B, Seshan K, Bera S (2017) Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J King Saud Univ-Sci 29(3):333-347. https://doi. org/10.1016/j.jksus.2016.08.003
- 12. Helaly AS (2017) Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern desert, Egypt-case study. Nriag J Astron Geophys 6:408-421. https://doi.org/10. 1016/j.nrjag.2017.09.003
- 13. Ibrahim-Bathis K, Ahmed SA (2016) Geospatial technology for delineating groundwater potential zones in doddahalla watershed of Chitradurga district, India. Egypt J Remote Sens Space Sci 19(2):223-234. https://doi.org/10.1016/j.ejrs.2016.06.002
- 14. Kim JC, Lee S, Jung HS, Lee S (2018) Landslide susceptibility mapping using random forest and boosted tree models in
- 15. Pyeong-Chang Korea. Geocarto Int 33(9):1000-1015. https:// doi.org/10.1080/10106049.2017.1323964
- 16. Kordestani MD, Naghibi SA, Hashemi H, Ahmadi K, Kalantar B, Pradhan B (2019) Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeol J 27(1):211-224. https:// doi.org/10.1007/s10040-018-1848-5
- 17. Kumar P, Herath S, Avtar R, Takeuchi K (2016) Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustain Water Resour Manage 2:419-430. https://doi.org/10.1007/s40899-016-0072-5
- 18. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4(1):33-41. https://doi.org/10.1007/s10346-006-0047-y
- 19. Lee S, Kim YS, Oh HJ (2012a) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manage 96(1):91-105. https://doi.org/10. 1016/j.jenvman.2011.09.016
- 20. Lee S, Song KY, Kim Y, Park I (2012b) Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeol J 20:1511-1527. https://doi.org/10.1007/s10040-012-0894-7
- 21. Lee S, Hong SM, Jung HS (2018) GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto Int 33(8):847-861. https://doi.org/10.1080/10106049.2017.1303091
- 22. Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. John Wiley & Sons
- 23. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing GIS, and MIF techniques. Geosci Front 3(2):189-196. https://doi.org/10.1016/j.gsf.2011.10.007
- 24. Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7(2):711-724. https://doi.org/10. 1007/s12517-012-0795-z
- 25. Mogaji KA, Lim HS, Abdullah K (2014) Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based dempster-shafer model. Arab J Geosci 8(5):3235-3258. https://doi.org/10.1007/s12517-014-1391-1
- 26. Mojaddadi H, Pradhan B, Nampak H, Ahmad A, Ghazali AHB (2017) Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Haz Risk 8(2):1080-1110. https://doi.org/10.1080/ 19475705.2017.1294113
- 27. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3-30. https://doi.org/10.1002/hyp. 3360050103
- 28. Murasingh S, Jha R, Adamala S (2018) Geospatial technique for delineation of groundwater potential zones in mine and dense forest area using weighted index overlay technique. Groundw Sustain Dev 7:387-399. https://doi.org/10.1016/j.gsd.2017.12.001
- 29. Naghibi SA, Pourghasemi HR (2015) A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manage 29(14):5217-5236. https://doi.org/10.1007/s11269-015-1114-8
- 30. Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A (2015) Groundwater qanat potential mapping using frequency ratio and shannon’s entropy models in the Moghan Watershed. Iran Earth Science Informatics 8(1):171-186. https://doi.org/10.1007/ s12145-014-0145-7
- 31. Naghibi SA, Pourghasemi HR, Dixon B (2016) GISbased groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44. https://doi.org/10.1007/ s10661-015-5049-6
- 32. Naghibi SA, Ahmadi K, Daneshi A (2017a) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manage 31(9):2761-2775. https://doi.org/10.1007/ s11269-017-1660-3
- 33. Naghibi SA, Moghaddam DD, Kalantar B, Pradhan B, Kisi O (2017b) A comparative assessment of gis-based data mining models and a novel ensemble model in groundwater well potential mapping. J Hydrol 548:471-483. https://doi.Org/10.1016/j.jhydrol.2017.03. 020
- 34. Naghibi SA, Pourghasemi HR, Abbaspour K (2018) A Comparison between ten advanced and soft computing models for groundwater Qanat potential assessment in Iran using R and GIS. Theoret Appl Climatol 131:967-984. https://doi.org/10.1007/ s00704-016-2022-4
- 35. Nampak H, Pradhan B, Manap MA (2014a) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283-300. https://doi.org/10. 1016/j.jhydrol.2014.02
- 36. Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang city Korea. J Hydrol 399(3-4):158-172. https://doi.org/10.1016/j. jhydrol.2010.12.027
- 37. Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand township, Southern Khorasan province. Iran Hydrogeology Journal 22(3):643-662. https://doi.org/10.1007/s10040-013-1089-6
- 38. Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at cameron highland Malaysia. Landslides 7(1):13-30. https://doi.org/10.1007/ s10346-009-0183-2
- 39. Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Geol 55(3):467-475. https://doi.org/10.1007/s00254-007-0992-3
- 40. Rahmati O, Pourghasemi HR, Melesse AM (2016) Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at mehran region. Iran Catena 137:360-372. https://doi.org/10.1016/j.catena.2015. 10.010
- 41. Regmi NR, Giardino JR, McDonald EV, Vitek JD (2015) A review of mass movement processes and risk in the critical zone of earth. Dev Earth Surf Process 19:319-362. https://doi.org/10.1016/ B978-0-444-63369-9.00011-2
- 42. Russoniello C, Michael H, Fernandez C, Andres A, He C, Madsen JA (2017) Investigation of submarine groundwater discharge at Holts Landing State Park, delaware: hydrogeologic framework, groundwater level and salinity observations. Delaware Geological Survey, University of Delaware, Newark, DE, USA
- 43. Sahin EK, Colkesen I, Acmali SS, Akgun A, Aydinoglu AS (2020) Developing comprehensive geocomputational tool for landslide susceptiblility mapping: LSM tool pack. Comput Geosci 144:104592. https://doi.org/10.1016/j.cageo.2020.104592
- 44. Sander P, Chesley MM, Minor TB (1996) Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: lessons learned. Hydrogeol J 4:40-49. https://doi.org/10. 1007/s100400050086
- 45. Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27:4599-4620. https://doi.org/10.1080/0143116060 0554983
- 46. Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S (2016) Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci. https://doi.org/10.1007/s12517-015-2166-z
- 47. Taylor R, Howard K (2000) A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol J 8:279-294. https://doi.org/10.1007/s1004 00000069
- 48. Teeuw RM (1995) Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeol J 3:21-30. https://doi.org/10.1007/s100400050057
- 49. Tehrany MS, Pradhan B, Jebur MN (2014) Flood Susceptibility mapping using a novel ensemble weights-ofevidence and support vector machine models in GIS. J Hydrol 512:332-343. https://doi.org/ 10.1016/j.jhydrol.2014.03.008
- 50. Wang Y, Yang y, Liao j, et al (2018) Support vactor Regression to prid-ict the design space for the extraction process of Pueraria lobata. Moleculus 23(10):2405
- 51. Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir region Saudi Arabia. Landslides 13(5):839-856. https://doi.org/10.1007/s10346-015-0614-1
- 52. Zhang C, Ma Y (eds) (2012) Ensembles machine learning. Springes, Boston
- 53. Zhu C, Xu XD, Wang XT, Xiong F, Tao ZG, Lin Y, Chen J (2019) Experimental investigation on nonlinear flow anisotropy behavior in fracture media. Geofluids 2019:1-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54b35db9-0312-47af-8d56-cf56bebd6497