PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the stability evolution law of expansive soft rock roadway affected by seasonal wet-dry cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many open-pit mines are gradually converted to underground mining, the problem of roadway surrounding rock damage caused by expansive soft rock is becoming increasingly problematic. To study the seasonal evolution of expansive rock mass containing clay minerals, an underground mine transferred from an open-pit was selected as the experimental mine. The experimental results of SEM electron microscopy and X-ray diffraction confirmed that the surrounding rock of the main haulage roadway contains a large number of expansive clay minerals. The expansive grade of the main transport roadway’s surrounding rock could then be identified as the medium expansive rock mass, which has a large amount of exchangeable cation and strong water absorption capacity, based on the combined test results of dry saturated water absorption and free expansion deformation. The water swelling can cause the roadway to considerably deform, and then the surrounding rock will have strong rheological characteristics. From the research results in the text, the seasonal evolution law of the main haulage roadway in the experimental mine was obtained, and the deformation law of the expansive rock mass under different dry and wet conditions was revealed. The research results provide a reference for studying the stability evolution law of expansive soft rocks in underground mines.
Rocznik
Strony
165--182
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang 110016, China
  • Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang110169, China
autor
  • University of Science and Technology Beijing, Beijing 100083, China
autor
  • University of Science and Technology Beijing, Beijing 100083, China
  • Northeastern University, Shenyang 100083, China
  • Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang 110016, China
  • Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang110169, China
autor
  • Northeastern University, Shenyang 100083, China
Bibliografia
  • [1] A.B. Hawkins, B.J. McConnell, Sensitivity of sandstone strength and deformability to changes in moisture content. Quarterly Journal of Engineering Geology and Hydrogeology 25, 115-130 (1992). DOI: https://doi.org/10.1144/GSL.QJEG.1992.025.02.05.
  • [2] A.R. Ram, M.S. Brook, S.J. Cronin, Engineering characteristics of soils prone to rainfall-induced slope failure in Viti Levu, Fiji. Quarterly Journal of Engineering Geology and Hydrogeology 52, 336-345 (2019). DOI: https://doi.org/10.1144/qjegh2018-140.
  • [3] B.K. Atkinson, P.G, Meredith, Stress corrosion fissureing of quartz: a note on the influence of chemical environment. Tectonophysics 77, 1-11 (1981). DOI: https://doi.org/10.1016/0040-1951(81)90157-8.
  • [4] C.A. Morrow, B.C. Zhang, J.D, Byerlee, Effective pressure law for permeability of Westerly granite under cyclic loading. Journal of Geophysical Research: Solid Earth 91, 3870-3876 (1986). DOI: https://doi.org/10.1029/jb091ib03p03870.
  • [5] C. Louis, Rock hydraulics. Rock mechanics. Springer, Vienna, 299-387 (1972). DOI: https://doi.org/10.1007/978-3-7091-4109-0_16.
  • [6] C.Y. Zhou, L.S. Tang, T.Z. Yan, A Research on Fractal Dimension and Nonlinear Dynamic Model of Xintan Landslide, China. Journal of Earth Science 2, 223-226 (1996). DOI: https://doi.org/10.1007/11499145_91.
  • [7] H.D. Jing, Y.H. Li, Application of MineTCS in the Deformation Monitoring of Roadway. Arabian Journal for Science and Engineering 44, 4587-4595 (2019). DOI: https://doi.org/10.1007/s13369-018-3499-1.
  • [8] H. Yang, P. Cao, X.L. Jiang, Micromechanical model for equivalent crack propagation under chemical corrosion of water-rock interaction. Rock & Soil Mechanics 31, 2104-2110 (2010). DOI: https://doi.org/10.3969/j.issn.1000-7598.2010.07.014.
  • [9] H. M. A. Rashid, M. Ghazzali, U. Waqas, Artificial intelligence-based modeling for the estimation of Q-Factor and elastic young’s modulus of sandstones deteriorated by a wetting-drying cyclic process. Archives of Mining Sciences 66 (4), 635-658 (2021). DOI: https://doi.org/10.24425/ams.2021.138944.
  • [10] J.B. Walsh, Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18, 429-435 (1981). DOI: https://doi.org/10.1016/0148-9062(81)90006-1.
  • [11] J.M. Logan, M.I. Blackwell, The influence of chemically active fluids on the frictional behavior of sandstone. EOS Trans Am Geophys Union 64, 835-837 (1983). DOI: https://doi.org/10.1007/s00254-004-1047-7.
  • [12] K.G. Raven, J.E. Gale, Water flow in a natural rock fracture as a function of stress and sample size. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 22, 251-261 (1985). DOI: https://doi.org/10.1016/0148-9062(85) 92952-3.
  • [13] L.J. Feucht, J.M. Logan, Effects of chemically active solutions on shearing behavior of a sandstone. Tectonophysics 175, 159-176 (1990). DOI: https://doi.org/10.1016/0040-1951(90)90136-V.
  • [14] L.S. Burshtein, Effect of moisture on the strength and deformability of sandstone. Soviet Mining 5, 573-576 (1969). DOI: https://doi.org/10.1007/BF02501278.
  • [15] L. Tang, P. Zhang, Y. Wang, On fracture strength of rocks with cracks under water action. Chinese Journal of Rock Mechanics & Engineering 23, 3337-3341 (2004). DOI: https://doi.org/10.1016/1000-6915(2004) 19-3337-05.
  • [16] M.G. Karfakis, M. Akram, Effects of chemical solutions on rock fracturing. International Journal of Rock Mechan ics and Mining Sciences & Geomechanics Abstracts 30, 1253-1259 (1993). DOI: https://doi.org/10.1016/0148-9062(93)90104-L.
  • [17] M.L. Maslia, D.C. Prowell, Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system. Journal of Hydrology 115, 1-49 (1990). DOI: https://doi.org/10.1016/0022-1694(90)90196-5.
  • [18] S.D. Priest, Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mechanics and Rock Engineering 38, 299-327 (2005). DOI: https://doi.org/10.1007/s00603-005- 0056-5.
  • [19] D. Vázquez-Silva, M.B. Prendes-Gero, M.I. Álvarez-Fernández, Optimal support design for galleries located in poor quality rock mass and under the influence of mining works. Archives of Mining Sciences 65 (4), 851-867 (2020). DOI: https://doi.org/10.24425/ams.2020.135181.
  • [20] K. Skrzypkowski, K. Zagórski, A. Zagórska, Determination of the Extent of the Rock Destruction Zones around a Gasification Channel on the Basis of Strength Tests of Sandstone and Claystone Samples Heated at High Tem peratures up to 1200°C and Exposed to Water. Energies 14, 6464 (2021). DOI: https://doi.org/10.3390/en14206464.
  • [21] Y. Sun, P. Zhang, W. Yan, Compressive deformation characteristics of crushed sandstone based on multiple experimental factors. Archives of Mining Sciences 65 (1), 129-146 (2020). DOI: https://doi.org/10.24425/ams.2020.132711.
  • [22] X.M. Sun, X. Wu, M.C. He, Differentiation and Grade Criterion of Strong Swelling Soft Rock. Chinese Journal of Rock Mechanics and Engineering 24 (1), 128-132 (2005). DOI: https://doi.org/10.3321/j.issn:1000-6915.2005.01.021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54acf195-5d65-4a0a-8f2f-43cdc7ce26ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.