PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Focus shaping of Weierstrass solid immersion lens by an axisymmetric Bessel-modulated Gaussian beam

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Weierstrass solid immersion lens (SIL) has been used to obtain superresolution because a smaller focal size is desirable. In this paper, focus shaping of Weierstrass SIL illuminated by an axisymmetric Bessel-modulated Gaussian beam (QBG beam) is investigated. It has been found theoretically that the sharper focusing of Weierstrass SIL disappears for a certain beam order of QBG beam. For case of a smaller beam order, the focus still locates on the plane of Weierstrass SIL and Weierstrass SIL still plays a tighter focusing role. However, when the beam order increases continuously, the focus lefts the plane of Weierstrass SIL, and shifts along an optical axis considerably. In addition, under condition of the higher beam order, the dependence of the focal shift on the beam order is nearly linear, which may be used to alter a focal position conveniently.
Czasopismo
Rocznik
Strony
s. 247--259
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai 200093, China
autor
autor
Bibliografia
  • [1] WILSON T., SHEPPARD C.J.R., Theory and Practice of Scanning Optical Microscopy, Academic, London, 1984.
  • [2] MANSFIELD S.M., KINO G.S., Solid immersion microscope, Applied Physics Letters 57(24), 1990, pp. 2615–2616.
  • [3] TERRIS B.D., MAMIN H.J., RUGAR D., STUDENMUND W.R., KINO G.S., Near-field optical data storage using a solid immersion lens, Applied Physics Letters 65(4), 1994, pp. 388–390.
  • [4] CHEKANOV A., BIRUKAWA M., ITOH Y., SUZUKI T., “Contact” solid immersion lens near-field optical recording in magneto-optical TbFeCo media, Journal of Applied Physics 85(8), 1999, pp. 5324–5326.
  • [5] GHISLAIN L.P., ELINGS V.B., CROZIER K.B., MANALIS S.R., MINNE S.C., WILDER K., KINO G.S., QUATE C.F., Near-field photolithography with a solid immersion lens, Applied Physics Letters 74(4), 1999, pp. 501–503.
  • [6] ZWILLER V., BJÖRK G., Improved light extraction from emitters in high refractive index materials using solid immersion lenses, Journal of Applied Physics 92(2), 2002, pp. 660–665.
  • [7] KARRAI K., LORENZ X., NOVOTNY L., Enhanced reflectivity contrast in confocal solid immersion lens microscopy, Applied Physics Letters 77(21), 2000, pp. 3459–3461.
  • [8] IPPOLITO S.B., GOLDBERG B.B., ÜNLÜ M.S., Theoretical analysis of numerical aperture increasing lens microscopy, Journal of Applied Physics 97(5), 2005, article 053105.
  • [9] YOSHITA M., SASAKI T., BABA M., AKIYAMA H., Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures, Applied Physics Letters 73(5), 1998, pp. 635–637.
  • [10] BABA M., SASAKI T., YOSHITA M., AKIYAMA H., Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy, Journal of Applied Physics 85(9), 1999, 6923–6925.
  • [11] WU Q., FEKE G.D., GROBER R.D., GHISLAIN L.P., Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens, Applied Physics Letters 75(26), 1999, pp. 4064–4066.
  • [12] CARON C.F.R., POTVLIEGE R.M., Bessel-modulated Gausian beams with quadratic radial dependence, Optics Communications 164(1–3), 1999, pp. 83–93.
  • [13] HRICHA Z., BELAFHAL A., Focal shift in the axisymmetric Bessel-modulated Gaussian beam, Optics Communications 255(4–6), 2005, pp. 235–240.
  • [14] WANG X., LÜ B., The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams, Optical and Quantum Electronics 34(11), 2002, pp. 1071–1077.
  • [15] BELAFHAL A., DALIL-ESSAKALI L., Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system, Optics Communications 177(1–6), 2000, pp. 181–188.
  • [16] ZHANGRONG MEI, DAOMU ZHAO, XIAOFENG WEI, FENG JING, QIHUA ZHU, Propagation of Bessel--modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture, Optik 116(11), 2005, pp. 521–526.
  • [17] GAO X., ZHAN Q.F., LI J., HU S., WANG J., ZHUANG S.L., Cylindrical vector axisymmetric Bessel--modulated Gaussian beam, Optical and Quantum Electronics 41(5), 2009, pp. 385–396.
  • [18] GAO X., ZHAN Q.F., LI J., WANG J., ZHUANG S.L., Spirally polarized axisymmetric Bessel-modulated Gaussian beam, Optik 122(6), 2011, pp. 524–528.
  • [19] GAO X., ZHAN Q.F., WANG Q., YUN M.J., GUO H.M., ZHUANG S.L., Subwavelength dark hollow focus of spirally polarized axisymmetric Bessel-modulated Gaussian beam, European Physical Journal D 64(1), 2011, pp. 103–108.
  • [20] HELSETH L.E., Roles of polarization, phase and amplitude in solid immersion lens systems, Optics Communications 191(3–6), 2001, pp. 161–172.
  • [21] ZHANG Y., YE X., Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens, Applied Physics B 86(1), 2007, pp. 97–103.
  • [22] WANG H., SHI L., LUKYANCHUK B., SHEPPARD C., CHONG TOW CHONG, Creation of a needle of longitudinally poliatzed light in vacuum using binary optics, Nature Photonics 2(8), 2008, pp. 501–505.
  • [23] SUN C.C., LIU C.K., Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation, Optics Letters 28(2), 2003, pp. 99–101.
  • [24] LI X., CAO Y., GU M., Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam, Optics Letters 36(13), 2011, pp. 2510–2512.
  • [25] KAWAUCHI H., YONEZAWA K., KOZAWA Y., SATO S., Calculation of optical trapping force on a dielectric shpere in the ray optics regime produced by a radially polarized laser beam, Optics Letters 32(13), 2007, pp. 1839–1841.
  • [26] KOZAWA Y., HIBI T., SATO A., HORANAI H., KURIHARA M., HASHIMOTO N., YOKOYAMA H., NEMOTO T., SATO S., Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam, Optics Express 19(17), 2011, pp. 15947–15954.
  • [27] KIM J., KIM D.C., BACK S.H., Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light, Microscopy Research and Technique 72(6), 2009, pp. 441–446.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54ac33d9-79a8-4c17-b619-4a0559d9187c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.