PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Facile microwave-assisted synthesis of Al:Mn co-doped PbI2 nanosheets: structural, vibrational, morphological, dielectric and radiation activity studies

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein, we report a successful development of nano-scale pure and Al and Mn co-doped PbI2 using facile microwave-assisted route. Structural study was done through X-ray diffraction analysis of grain size, dislocation density and lattice strain. The crystallite size was found to vary from 28 nm to 40 nm due to Al:Mn co-doping in PbI2. The presence of various vibrational modes was confirmed by FT-IR spectroscopy and red shifting was observed in peak positions compared to the bulk. Surface morphology, examined using a scanning electron microscope, confirmed the formation of single crystal nanosheets of a thickness in the range of 10 nm to 30 nm. The single crystal nanosheets were found to be transformed to large area nanosheets due to the doping. Enhancement in dielectric constant from ~7.5 to 11 was observed with increasing Al doping concentration. Linear attenuation coefficient was calculated and showed the enhancement of blocking gamma rays with increasing doping concentration. Its value was found to increase from 7.5 to 12.8 with the doping. The results suggest that the synthesized nanostructures can be used for detection and absorption of gamma rays emitted by 137Cs and 241Am sources.
Wydawca
Rocznik
Strony
320--326
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo, Egypt
autor
  • Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
autor
  • Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Physics Department, Faculty of Science-AL Faisaliah, Campus, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo, Egypt
autor
  • Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
Bibliografia
  • [1] DUGAN A., HENISCH H., J. Phys. Chem. Solids, 28 (1967), 971.
  • [2] ZHU X., WEI Z., JIN Y., XIANG A., Cryst. Res. Technol., 42 (2007), 456.
  • [3] SILVA DA F.A., VEISSID N., VEISSID C., PEPE C., N. OLIVAIRA DE B.N., SILVA DA B.A., Appl. Phys. Lett, 69 (1996) 1930.
  • [4] CHAUDHARY S.K., Cryst. Struct. Theor. Appl., 1 (2012) 21.
  • [5] FINLAYSON C., SAZIO P., J. Phys. D Appl. Phys., 39 (2006), 1477.
  • [6] KLEIM R., RAGA F., J. Phys. Chem. Solids, 30 (1969), 2213.
  • [7] ANDO M., YAZAKI M., KATAYAMA I., ICHIDA H., WAKAIKI S., KANEMATSU Y., TAKEDA J., Phys. Rev. B, 86 (2012), 155206.
  • [8] QUILETTES DE D.W., VORPAHL S.M., STRANKS S.D., NAGAOKA H., EPERON G.E., ZIFFER M.E., SNAITH H.J., GINGER D.S., Science, 348 (2015), 683.
  • [9] CHEN Q., ZHOU H., HONG Z., LUO S., DUAN H.-S., WANG H.-H., LIU Y., LI G., YANG Y., J. Am. Chem. Soc., 136 (2013), 622.
  • [10] SHKIR M., YAHIA I.S., ALFAIFY S., ABUTALIB M.M., MUHAMMAD S., J. Mol. Struct., 1110 (2016), 83.
  • [11] SHKIR M., YAHIA I.S., GANESH V., ALGARNI H., ALFAIFY S., Mater. Lett., 176 (2016), 135.
  • [12] GOLDBERG M., LANGER R., JIA X., J. Biomat. Sci.-Polym. E., 18 (2007), 241.
  • [13] KLABUNDE K.J., RICHARDS R., Nanoscale materials in chemistry, Wiley Online Library, 2001.
  • [14] KAVIYARASU K., SAJAN D., SELVAKUMAR M.S., THOMAS S.A., ANAND D.P., J. Phys. Chem. Solids, 73 (2012), 1396.
  • [15] DAG I., LIFSHITZ E., J. Phys. Chem., 100 (1996), 8962.
  • [16] KASI G.K., DOLLAHON N.R., AHMADI T.S., J. Phys. D Appl. Phys., 40 (2007), 1778.
  • [17] ZHU G., LIU P., HOJAMBERDIEV M., ZHOU J.-P., HUANG X., FENG B., YANG R., Appl. Phys. A-Mater., 98 (2010), 299.
  • [18] CHEN X., MAO S.S., Chem. Rev., 107 (2007), 2891.
  • [19] ROGERS J., LAGALLY M., NUZZO R., Nature, 477 (2011), 45.
  • [20] KIM D.-H., LU N., GHAFFARI R., ROGERS J.A., NPG Asia Mater., 4 (2012), e15.
  • [21] SHKIR M., ALFAIFY S., YAHIA I.S., GANESH V., SHOUKRY H., Physica B, 508 (2017), 41.
  • [22] YAHIA I., ABUTALIB M., J. Mol. Struct., 1138 (2017), 215.
  • [23] YAHIA I.S., SHKIR M., ALFAIFY S., GANESH V., ZAHRAN H.Y., KILANY M., Mat. Sci. Eng. C, 72 (2017), 472.
  • [24] SHKIR M., ALFAIFY S., Sci. Rep., 7 (2017), 16091.
  • [25] SHKIR M., KILANY M., YAHIA I.S., Ceram. Int., 43 (2016), 39.
  • [26] CONDELES J., MULATO M., J. Phys. Chem. Solids., 89 (2016), 39.
  • [27] AHMED W., JACKSON M.J., Emerging nanotechnologies for manufacturing, William Andrew, 2014.
  • [28] HARALD I., LÜTH H., Solid-state physics: an introduction to principles of materials science, Springer-Verlag, 1996.
  • [29] JILANI A., ABDEL-WAHAB M.S., ZAHRAN H., YAHIA I., AL-GHAMDI A.A., Appl. Phys. A, 122 (2016), 862.
  • [30] SHKIR M., ALFAIFY S., GANESH V., YAHIA I., Solid State Sci., 70 (2017), 81.
  • [31] SHANMUGAM G., THIRUPUGALMANI K., RAKHIKRISHNA R., PHILIP J., BRAHADEESWARAN S., J. Therm. Anal. Calorim., 114 (2013), 1245.
  • [32] KAYGILI O., DOROZHKIN S.V., ATES T., ALGHAMDI A.A., YAKUPHANOGLU F., Ceram. Int., 40 (2014), 9395.
  • [33] JONSCHER A.K., Nature, 267 (1977), 673., Solid State Sci., 70 (2017), 81.
  • [34] JAIN V.K., VERMA A., Physics of semiconductor devices: 17th international workshop on the physics of semiconductor devices 2013, Springer Science & Business Media, 2013.
  • [35] SHAPIRO J., Radiation protection: a guide for scientists, regulators, and physicians, La Editorial, UPR, 2002.
  • [36] HUBBELL J.H., Int. J. Appl. Radiat. Isotopes, 33 (1982), 1269.
  • [37] BADRAN H., YAHIA I., HAMDY M.S., AWWAD N., Radiat. Phys. Chem., 130 (2017), 85.
  • [38] MARTIN J.E., Physics for radiation protection: a handbook, John Wiley & Sons, 2006.
  • [39] SHKIR M., ALFAIFY S., YAHIA I.S., HAMDY M.S., GANESH V., ALGARNI H., J. Nanopart. Res., 19 (2017), 328.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54ab83bb-af1c-4c9a-addb-9cdaca8b44e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.