PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Influence of Fuel Dose on the Electrical Parameters of the Starting Process of a Single-Cylinder Diesel Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The start-up is a transient state of operation of an internal combustion engine during which many negative phenomena occur that affect the technical condition of the engine, its electrical equipment and the natural environment. The start-up process of an internal combustion engine is influenced by many factors, such as: technical condition of the starting system, technical condition of the engine, battery charge level, lubricant properties, engine standstill time, engine temperature, etc. Mechanical energy is required to start the engine, supplied by an electric starter by drives the engine’s crankshaft. Knowledge about the operating parameters of the electric starter during the start-up process is important not only for the user of the engine (vehicle driver), but above all for designers of modern combustion engine starting systems and service personnel. The paper presents the results of experimental tests of electrical parameters of the single-cylinder diesel engine start-up process at variable fuel injection parameters under ambient temperature conditions.
Twórcy
autor
  • Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
  • Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524, Warsaw, Poland
Bibliografia
  • 1. Abramek K.F., Prajwowski K., Mozga Ł. Selected issues related to diagnostic testing of hybrid vehicles”. IOP Conference Series: Materials Science and Engineering, 2018, 421(3): 032001.
  • 2. Barta D., Mruzek M., Kendra M., Kordos P., Krzywonos L. Using of non-conventional fuels in hybrid vehicle drives. Advances in Science and Technology Research Journal, 2016, 10(32): 240–247.
  • 3. Diżo J., Blatnický M., Semenov S., Mikhailov E., Kostrzewski M., Drozdziel P., Štastniak P. Electric and plug-in hybrid vehicles and their infrastructure in a particular European region. Transportation Research Procedia, 2021, 55: 629–636.
  • 4. Figlus T., Czachor T. Preliminary studies of the effect of travelling speed and propulsion type on the sound level in the passenger compartment of a vehicle with a hybrid propulsion system. 11th International Science and Technical Conference Automotive Safety, AUTOMOTIVE SAFETY 2018, 1–5.
  • 5. Vehicles in use Europe, January 2021, ACEA Report. (https://www.acea.auto/files/report-vehicles-in-use-europe-january-2021-1.pdf) (access from 19.08.2021).
  • 6. Ipci D., Karabulut H. Thermodynamic and dynamic modelling of a single cylinder four stroke diesel engine. Applied Mathematical Modelling, 2016, 40: 3925–3937.
  • 7. Sakunthalai R.A., Xu H., Liu D., Tian J., Wyszynski M.L., Piaszyk J. Impact of cold ambient conditions on cold start and idle emissions from diesel engines. SAE Technical Paper, 2014, 1: 2715.
  • 8. Ambrozik A., Ambrozik T., Łagowski P. Fuel impact on emissions of harmful components of the exhaust gas from the CI engine during cold start-up. Eksploatacja i Niezawodność – Maintenance and Reliability, 2015, 17(1): 95–99.
  • 9. Kubica G., Flekiewicz M., Marzec P. Selected aspects of the use of gaseous fuels blends to improve efficiency and emission of SI engine. Transport Problems, 2019, 14(1): 95–103.
  • 10. Matijošius J., Orynycz O., Kovbasenko S., Simonenko V., Shuba Y., Moroz V., Gutarevych S., Wasiak A., Tucki K. Testing the indicators of diesel vehicles operating on diesel oil and diesel biofuel. Energies, 2022, 15(24): 9263.
  • 11. Mikulski M., Droździel P., Tarkowski S. Reduction of transport-related air pollution. A case study based on the impact of the COVID-19 pandemic on the level of NOx emissions in the city of Krakow. Open Engineering, 2021, 11(1): 790–796.
  • 12. Šarkan B., Hudec J., Sejkorova M., Kuranc A., Kiktova M. Calculation of the production of exhaust emissions in the laboratory conditions. Journal of Physics: Conference Series, 2021, 1736(1): 012022.
  • 13. Wiśniowski P., Ślȩzak M., Niewczas M., Szczepański T. Method for synthesizing the laboratory exhaust emission test from car engines based on road tests. IOP Conference Series: Materials Science and Engineering, 2018, 421(4): 042080.
  • 14. Cui Y., Peng H., Deng K., Shi L. The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts. Energy, 2014, 64: 323–329.
  • 15. Giechaskiel B., Zardini A.A., Clairotte M. Exhaust gas condensation during engine cold start and application of the dry-wet correction factor. Applied Sciences, 2019, 9(11): 2263.
  • 16. Kuranc A., Słowik T., Wasilewski J., Szyszlak-Bargłowicz J., Stoma M., Šarkan B. Emission of particulates and chosen gaseous exhausts components during a diesel engine starting process. 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture, Lublin, Poland. NOV. 2017, 22–24: 210–215.
  • 17. Labaj J., Barta D. Unsteady flow simulation and combustion of ethanol in diesel engines. Komunikacie, 2006, 8(2), 27–37.
  • 18. Ding S.L., Song E.Z., Yang L., Litak G., Ma X.Z. Investigation on nonlinear dynamic characteristics of combustion instability in the lean-burn premixed natural gas engine. Chaos Solitons & Fractals, 2016, 93: 99–110.
  • 19. Longwic R., Sander P. The course of combustion process under real conditions of work of a traction diesel engine supplied by mixtures of canola oil containing n-hexane. IOP Conference Series: Materials Science and Engineering, 2018, 421(4): 042050.
  • 20. Domański M., Paszkowski J., Sergey O., Zarajczyk J., Siłuch D. Analysis of Energy Properties of Granulated Plastic Fuels and Selected Biofuels. Agricultural Engineering, 2020, 24(3): 1–9.
  • 21. Dzieniszewski G., Kuboń M., Pristavka M., Findura P. Operating parameters and environmental indicators of diesel engines fed with crop-based fuels. Agricultural Engineering, 2021, 25(1): 13–28.
  • 22. Jayakumar M., Gebeyehu K.B., Selvakumar K.V., Parvathy S., Kim W., Karmegan N. Waste Ox bone based heterogeneous catalyst synthesis, characterization, utilization and reaction kinetics of biodiesel generation from Jatropha curcas oil. Chemosphere, 2022, 288(2): 132534.
  • 23. Lebedevas S., Pukalskas S., Žaglinskis J., Matijošius J. Comparative investigations into energetic and ecological parameters of camelina-based biofuel used in the 1Z diesel engine”. Transport, 2012, 27: 171–177.
  • 24. Zaja̧c G., Wȩgrzyn A. Analysis of work parameters changes of diesel engine powered with diesel fuel and FAEE blends. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2008, 38(2): 17–24.
  • 25. Dittrich A., Beroun S., Zvolsky T. Diesel gas dual engine with liquid LPG injection into intake manifold. Engineering for Rural Development. 2018, 1978–1983.
  • 26. Cung K.D., Wallace J., Kalaskar V., Smith III E.M., Briggs T., Bitsis D.C. Experimental study on engine and emissions performance of renewable diesel methanol dual fuel (RMDF) combustion. Fuel, 2024, 357: 129664.
  • 27. Lebedevas S., Pukalskas S., Dauksys V. Mathematical modelling of indicative process parameters of dual-fuel engines with conventional fuel injection system. Transport, 2020, 35(1): 57–167.
  • 28. Czech P. Determination of the course of pressure in an internal combustion engine cylinder with the use of vibration effects and radial basis function – Preliminary research. Communications In Computer and Information Science, 2012, 329 CCIS: 175–182.
  • 29. Figlus T., Liščák Š. Assessment of the vibroactivity level of SI engines in stationary and non-stationary operating conditions. Journal of Vibroengineering, 2014, 16(3): 1349–1359.
  • 30. Hranický M.P., Štefancová V, Kendra V. Analysis of the effectiveness of noise abatement measures in relation to the type of train. MATEC Web of Conferences, 2018, 235: 00006.
  • 31. Figlus T., Szafraniec P., Skrúcaný T. Methods of Measuring and Processing Signals during Tests of the Exposure of a Motorcycle Driver to Vibration and Noise. International Journal of Environmental Research and Public Health, 2019, 16(17): 3145.
  • 32. Zvolensky P., Kašiar L., Volna P., Barta D. Simulated computation of the acoustic energy transfer through the structure of porous media in application of passenger carriage body. Procedia Engineering, 2017, 187: 100–109.
  • 33. Skrucany T., Šarkan B., Figlus T., Synak F., Vrabel J. Measuring of noise emitted by moving vehicles. MATEC Web of Conferences, 2017, 107: 00072.
  • 34. Jacyna M., Wasiak M., Lewczuk K., Karoń G. Noise and environmental pollution from transport: decisive problems in developing ecologically efficient transport systems. Journal of Vibroengineering, 2017, 19(7): 5639–5655.
  • 35. Maghrour Zefreh M., Torok A. Theoretical Comparison of the Effects of Different Traffic Conditions on Urban Road Traffic Noise. Journal of Advanced Transportation, 2018, 1–11.
  • 36. Dmowski A., Ignaciuk P., Ślȩzak M., Niewczas A. Analysys of reliability and cost of repairs of trucks under long-term lease conditions. Journal of Konbin, 2016, 38(1): 153–178.
  • 37. Dzitkowski, T., Dymarek A., Margielewicz J., Gąska D., Orzech Ł., Lesiak K. Designing of drive systems in the aspect of the desired spectrum of operation. Energies, 2021, 14(9): 2562.
  • 38. Szpica D. Coefficient of engine flexibility as a basis for the assessment of vehicle tractive performance. Chinese Journal of Mechanical Engineering, 2019, 32: 39.
  • 39. Skrucany T., Stopková M., Stopka O., Kalašová A., Ovčiarik P. User’s determination of a proper method for quantifying fuel consumption of a passenger car with compression ignition engine in specific operation conditions. Open Engineering, 2021, 11(1): 151–160.
  • 40. Aulin D., Klymenko O., Falendysh A., Kletska O., Diżo J. Improvement of diesel injector nozzle test techniques. IOP Conference Series: Materials Science and Engineering 2020, 985(1): 012031.
  • 41. Eliasz J., Osipowicz T., Abramek K.F., Mozga Ł. Model issues regarding modification of fuel injector components to improve the injection parameters of a modern compression ignition engine powered by biofuel. Applied Sciences, 2019, 9(24): 5479.
  • 42. Kamiński M., Budzyński P., Hunicz J., Józwik J. Evaluation of changes in fuel delivery rate by electromagnetic injectors in a common rail system during simulated operation. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2021, 23(2): 352.
  • 43. Osipowicz T., Abramek K.F., Matuszak Z., Jaskiewicz M., Ludwinek K., Łagowski P. The concept of annular channels application on the spraying nozzle needle of modern fuel injector in the aspect of combustion process improvement. 11th International Science and Technical Conference Automotive Safety, AUTOMOTIVE SAFETY 2018, Casta Papiernicka, 18–20 April 2018, Code 136991.
  • 44. Punov P., Gechev T., Mihalkov S., Podevin P., Barta D. Experimental study of multiple pilot injection strategy in an automotive direct injection diesel engine. MATEC Web of Conferences, 2018, 234: 03007.
  • 45. Pawlak G., Skrzek T. Combustion of raw Camelina Sativa oil in CI engine equipped with common rail system. Scientific Reports, 2023, 13(1): 19731.
  • 46. Stoeck T. Analytical methodology for testing Common Rail fuel injectors in problematic cases. Diagnostyka, 2021, 22(2): 47–52.
  • 47. Czech P., Madej H. Application of cepstrum and spectrum histograms of vibration engine body for setting up the clearance model of the piston-cylinder assembly for rbf neutral classifier. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2011, 52(4): 15–20.
  • 48. Koszałka G. The use of the gas flow model to improve the design of the piston-rings-cylinder system of a diesel engine. IOP Conference Series: Materials Science and Engineering, 2019, 659(1): 012072.
  • 49. Mysłowski J., Talaga K. Thermal loads of a piston in a diesel engine during start-up. Combustion Engines, 2008, 2(133): 20–25.
  • 50. Siemiątkowski Z., Szumiata T., Gzik-Szumiata M., Martynowski R., Rucki M. Application of the microscopic and Mössbauer studies to the analysis of a marine diesel engine crankshaft. Journal of Marine Engineering and Technology, 2018, 17(3): 160–167.
  • 51. Jermak C.J., Dereżyński J., Rucki M. Measurement system for assesment of motor cylinder tolerances and roundness. Metrology and Measurement Systems, 2018, 25(1): 103–114.
  • 52. Droździel P. Cylinder liner wear during starting of an internal combustion engine. Journal of Friction and Wear, 2001, 22(6): 65–71.
  • 53. Droździel P. The influence of the vehicle work organization conditions on the engine start-up parameters. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2008, 37(1): 72–74.
  • 54. Abramek K.F. Phenomenon of load losses at the engine start-up stage. TEKA Komisji Energetyki Rolnictwa - OL PAN, 2008, 8a: 7–11.
  • 55. Broatch A., Ruiz S., Margot X., Gil A. Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines. Energy, 2010, 35: 2251–2260.
  • 56. Chartier C., Aronsson U., Andersson Ö., Egnell R. Effect of injection strategy on cold start performance in an optical light duty DI diesel engine. SAE Paper 2009-24-0045.
  • 57. Desantes J.M., Garcia-Oliver J.M., Pastor J.M., Ramirez-Hernandez J.G. Influence of nozzle geometry on ignition and combustion for high-speed direct injection diesel engines under cold start conditions. Fuel, 2011, 90(11): 3359–3368.
  • 58. Pastor Jose V., Garcia-Oliver J.M., Pastor J.M., Ramirez-Hernandez J.G. 2011. Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions. Fuel, 2011, 90(4): 1556–1566.
  • 59. Figlus T., Konieczny Ł, Burdzik R., Czech P. The effect of damage to the fuel injector on changes of the vibroactivity of the diesel engine during its starting. Vibroengineering Procedia, 2015, 6: 180–184.
  • 60. Jaworski A., Kuszewski H., Ustrzycki A., Balawender K., Lejda K., Woś P. Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions. Environmental Science and Pollution Research International 2018, 25(18): 17862–17877.
  • 61. Pacaud P., Perrin H., Olivier L. Cold start on diesel engine: is low compression ratio compatible with cold start requirements? SAE Paper 2008-01-1310.
  • 62. Payri F., Broatch A., Salavert J.M., Martín J. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines. Experimental Thermal and Fluid Science, 2010, 34: 857–865.
  • 63. Roberts A., Brooks R., Shipway P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Conversion and Management, 2014, 82: 327–350.
  • 64. Droździel P. The influence of vehicle maintenance conditions on chosen electric parameters of starter during combustion engine start-up. Komunikácie: vedecké listy Žilinskej Univerzity, Communications: scientific letters of the University of Žilina 2006, 8(2): 53–58.
  • 65. Hurtová I., Sejkorová M., Verner J. A study of diesel particulate filter impact on engine oil quality. Transport Means - Proceedings of the International Conference, 2019-October: 2019, 691–695.
  • 66. Sejkorova M., Hurtova I. Engine oil analysis - effective instrument to evaluate reliability of tractor engines. Engineering for Rural Development, 2019, 18: 971–976.
  • 67. Dziubiński M., Litak G., Drozd A., Szydło K., Longwic R., Wolszczak P. Using the Hall Effect for Monitoring the Starter Condition in Motor Vehicles. Applied Sciences, 2018, 8(5): 747.
  • 68. Dziubiński M., Siemionek E., Plich M., Drozd A., Toborek K. Simulation of automotive starter faults. Journal of Konbin, 2017, 44(1): 141–158.
  • 69. Plizga K. Metody diagnozowania rozruszników samochodowych. MOTROL, 2008, 10: 102–109.
  • 70. Warguła Ł., Waluś K.J., Krawiec P. Small engines spark ignited (SI) for non-road mobile machineryreview. Transport Means 2018, Proceedings of the 22nd International Scientific Conference, 03–05 Oct. 2018, Trakai, Lithuania. Part 2, Kaunas, Lithuania, 2018, 585–591.
  • 71. Warguła Ł., Kaczmarzyk P. Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review. Energies, 2022, 15(20): 7672-1-7672-11.
  • 72. Waluś K.J., Warguła Ł., Krawiec P., Adamiec J.M. Legal regulations of restrictions of air pollution made by non-road mobile machinery—the case study for Europe: a review. Environmental Science and Pollution Research, 2018, 25(4): 3243–3259.
  • 73. Warguła Ł., Lijewski P., Kukla M. Influence of non-commercial fuel supply systems on small engine SI exhaust emissions in relation to European approval regulations. Environmental Science and Pollution Research, 2022, 29(37): 116.
  • 74. https://dieselnet.com/standards/eu/nonroad_si.php (access from 19.03.2024).
  • 75. https://dieselnet.com/standards/eu/nonroad.php (access from 19.03.2024).
  • 76. User manual of engine Ruggerini Diesel, 2004.
  • 77. Caban J. Wpływ parametrów wtrysku paliwa na przebieg procesu rozruchu silnika o zapłonie samoczynnym. PhD thesis. Lublin: Politechnika Lubelska. 2018. 165. [In Polish: Influence of fuel injection parameters on the course of the diesel engine starting process. PhD thesis. Lublin: Lublin University of Technology].
  • 78. Lodi F., Zare A., Arora P., Stevanovic S., Jafari M., Ristovski Z., Brown R.J., Bodisco T. Engine performance and emissions analysis in a cold, intermediate and hot start diesel engine. Applied Sciences, 2020, 10(11): 3839.
  • 79. BN-84/1301-08 Silniki o zapłonie samoczynnym. Wtryskiwacze. Wymagania i badania. [In Polish: Diesel engines. Injectors. Requirements and tests].
  • 80. Kurtyka K., Pielecha J. Cold start emissions from gasoline engine in RDE tests at different ambient temperatures. Combustion Engines 2020, 181(2): 24–30.
  • 81. Ramirez J.D., Romero C.A., Mejía J.C., Quintero H.F. A methodology for non-invasive diagnosis of diesel engines through characteristics of starter system performance. Diagnostyka, 2022, 23(2): 2022202.
  • 82. Caban J., Droździel P., Ignaciuk P., Kordos P. Analysis of the effect of the fuel dose on selected parameters of the diesel engine start-up process. Transportation Research Procedia 2019, 40: 647–654.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54aa0926-f947-443b-b745-58a27181561a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.