PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified concept of axial-flux permanent magnet machine with field weakening capability

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the concept of an innovative field-controlled axial-flux permanent-magnet (FCAFPM) machine. In order to show the working principle and features of the proposed dual-rotor with surface-mounted PM’s and iron poles, a toroidallywounded slotted single-stator FCAFPM machine is investigated and analyzed in detail, using 3-D FEAnalysis. The control range, back electromotive force (back-EMF), output and cogging torque components have been evaluated.
Rocznik
Strony
177--185
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Department of Power Engineering and Electrical Drives West Pomeranian University of Technology Szczecin 70-313 Szczecin, Poland
Bibliografia
  • [1] Kim K.C., Novel Magnetic Flux Weakening Method of Permanent Magnet Synchronous Motor for Electric Vehicles. IEEE Transactions on Magn. 48(11): 4042-4045 (2012).
  • [2] May H., Palka R., Paplicki P. et al., Modified concept of permanent magnet excited synchronous machines with improved high-speed features. Archives of Electrical Engineering 60(4): 531-540 (2011).
  • [3] Chaithongsuk S., Nahid-Mobarakeh B., Caron J. et al., Optimal Design of Permanent Magnet Motors to Improve Field-Weakening Performances in Variable Speed Drives. IEEE Transactions on Ind. Electron. 59(6): 2484-2494 (2012).
  • [4] May H., Palka R., Paplicki P. et al., Comparative research of different structures of a permanentmagnet excited synchronous machine for electric vehicles, Electrical Review 88(12a): 53-55 (2012).
  • [5] Di Barba P., Mognaschi M.E., Palka R. et al., Design optimization of a permanent-magnet excited synchronous machine for electrical automobiles, International Journal of Applied Electromagnetics and Mechanics, IOS Press 39(1-4): 889-895 (2012).
  • [6] Chau K.T., Chan C.C., Liu C., Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Industrial Electronics 55(6): 2246-2257 (2008).
  • [7] Sulaiman E., Kosaka T., Matsui N., Design and Performance of 6-slot 5-pole PMFSM with Hybrid Excitation for Hybrid Electric Vehicle Applications. International Power Electronics Conference, pp. 1962-1968, (2010).
  • [8] Wang J., Howe D., Design optimisation of radially magnetised, iron-cored, tubular permanent magnet machines and drive systems. IEEE Transactions on Magnetics 40(5): 3262-3277 (2004).
  • [9] Nguyen-Thac K., Orlowska-Kowalska T., Tarchala G., Comparative analysis of the chosen fieldweakening methods for the Direct Rotor Flux Oriented Control drive system, Archives of Electrical Engineering 61(4): 443-454 (2012).
  • [10] Paplicki P., The new generation of electrical machines applied in hybrid drive car, Electrical Review 86(6): 101-103 (2010).
  • [11] Brown N.L., Haydock L., New brushless synchronous alternator. IEE Proceedings of Electric Power Applications 150(6): 629-635 (2003).
  • [12] Spooner E., Khatab S.A.W., Nicolaou N.G., Hybrid excitation of AC and DC machines, 4th International Conference on Electrical Machines and Drives (EMD’89), pp. 48-52 (1989).
  • [13] Aydin M., Surong H., Lipo T.A., Design, Analysis, and Control of a Hybrid Field-Controlled Axial- Flux Permanent-Magnet Motor. Industrial Electronics, IEEE Transactions on Magn. 57(1): 78-87 (2010).
  • [14] Paplicki P., Coreless disc-type electrical machine with permanent magnets – modeling 3D, Electrical Review 87(11): 106-110 (2011).
  • [15] Putek P., Slodička M., Paplicki P., Pałka R., Minimization of cogging torque in permanent magnet machines using the topological gradient and adjoint sensitivity in multi-objective design. International Journal of Applied Electromagnetics and Mechanics 39(1-4): 933-940 (2012).
  • [16] Putek P., Paplicki P., Slodička M. et al. Application of topological gradient and continuum sensitivity analysis to the multi-objective design optimization of a permanent-magnet excited synchronous machine, Electrical Review 88(7a): 256-260 (2012).
  • [17] Di Barba P., Mognaschi M.E., Palka R. et al., Optimization of the MIT Field Exciter by a Multiobjective Design. IEEE Trans. on Magn. 45(3): 1530-1533 (2009).
  • [18] Wardach M., Cogging torque reducing in electric machine by poling modification of magnetic circuit. Przegląd Elektrotechniczny 2: 131-133 (2009).
  • [19] Kabushiki Kaisha Meidensha, Hybrid excitation type permanent magnet synchronous motor. US Patent no. 5,682,073, Inventor: Takayuki Mizuno, Tokyo, Japan (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-549ba99d-c25a-46bc-b7a6-7abc086cef23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.