PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of carbomer microgel pH and concentration on the Herschel–Bulkley parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an experimental investigation of the rheological properties of carbomer microgels.All of the tested fluids were made up from commercial polyacrylic acid, Carbopol Ultrez 30. Intotal, eighteen microgels were prepared, differing in concentration; 0.2, 0.4 and 0.6 wt%, with sixlevels of neutralisation for pH from 4.0 to 9.0. Based on the experimental flow curves it was foundthat all tested microgels are yield stress shear-thinning fluids. Therefore, the Herschel–Bulkley modelwas used and its rheological parameters were determined. It was found that both the concentrationand the pH value significantly affected the yield stress. As the Carbopol concentration increased,the yield point also increased. With the increasing value of pH, the yield stress first increased untila certain maximum level and then decreased. The maximum values of yield stress were obtained forpH=6to 7, depending on polymer concentration. It was also found that flow curves of the testedmicrogels could be described using one universal master curve, thus they have common rheologicalbehaviour.
Rocznik
Strony
173--–182
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Abdullah G.Z., Abdulkarim M.F., Mallikarjun C., Mahdi E.S., Basri M., Sattar M.A., Noor A.M., 2013. Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen. Pak. J. Pharm. Sci., 26 (1), 75–83.
  • 2. Bakker A., Fasano J.B., 1993. A computational study of the flow pattern in an industrial paper pulp stock chest with a side-entering impeller, Annual AIChE Meeting, Nov. 1992. AIChE Symposium Series 293, 89, 118–124.
  • 3. Bhole M., Ford C., Bennington C.P.J., 2009. Characterization of axial flow impellers in pulp fibre suspensions. Chem. Eng. Res. Des., 87, 648–653. DOI: 10.1016/j.cherd.2008.11.002.
  • 4. Bonnecaze R.T., Cloitre M., 2010. Micromechanics of soft particle glasses, In: Cloitre M. (Ed.), High Solid Dispersions, Springer, Berlin, Heidelberg, 117–161. DOI: 10.1007/12_2010_90.
  • 5. Coussot P., 2014. Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid Mech., 211, 31–49. DOI: 10.1016/j.jnnfm.2014.05.006.
  • 6. Craig D.Q.M., Tamburic S., Buckton G., Newton J.M., 1994. An investigation into the structure and properties of Carbopol 934 gels using dielectric spectroscopy and oscillatory rheometry. J. Controlled Release, 30, 213–223. DOI: 10.1016/0168-3659(94)90027-2.
  • 7. Cui X., Zhang X., Yang Y., Wang C., Zhang C., Peng G., 2017. Preparation and evaluation of novel hydrogel based on polysaccharide isolated from Bletilla striata. Pharm. Dev. Technol., 22, 1001–1011. DOI: 10.1080/10837450.2016. 1221422.
  • 8. Gafiţanu C.A., Filip D., Cernătescu C., Ibănescu C., Danu M., Pâslaru E., Rusu D., Tuchiluş C.G., Macocinschi D., 2016. Formulation and evaluation of anise-based bioadhesive vaginal gels. Biomed. Pharmacother., 83, 485–495. DOI: 10.1016/j.biopha.2016.06.053.
  • 9. Griffith J., Borroto J., Dominguez J., Derivet M., Cuesta J., Flores P., Fernandez Rivas D., Amor A., Franklin B., 2004. Tracer experimental techniques for CFD model verification and validation in sugar crystallizer. In: Integration of tracing with computational fluid dynamics for industrial process investigation: final report of a co-ordinated research project. IAEA-TECDOC, 1412, 67–83.
  • 10. Gutowski I.A., Lee D., de Bruyn J.R., Frisken B.J., 2012. Scaling and mesostructure of Carbopol dispersions. Rheol. Acta, 51, 441–450. DOI: 10.1007/s00397-011-0614-6.
  • 11. Herschel W., Bulkley R., 1926. Measurement of consistency as applied to rubber-benzene solutions. Proc. Am. Soc. Test. Mater., 26, 621–633.
  • 12. Kelessidis V.C., Hatzistamou V., 2011. Preparation methodology and rheological properties of yield pseudoplastic transparent fluids. J. Dispersion Sci. Technol., 32, 380–388. DOI: 10.1080/01932691003662399.
  • 13. Kelessidis V.C., Poulakakis E., Chatzistamou V., 2011. Use of Carbopol 980 and carboxymethyl cellulose polymers as rheology modifiers of sodium-bentonite water dispersions. Appl. Clay Sci., 54, 63–69. DOI: 10.1016/j.clay.2011. 07.013.
  • 14. Moore I.P.T., Cossor G., Baker M.R., 1995. Velocity distributions in a stirred tank containing a yield stress fluid. Chem. Eng. Sci., 50, 2467–2481. DOI: 10.1016/0009-2509(95)00086-K.
  • 15. Osmałek T., Milanowski B., Froelich A., Górska S., Białas W., Szybowicz M., Kapela M., 2017. Novel organogels for topical delivery of naproxen: design, physicochemical characteristics and in vitro drug permeation. Pharm. Dev. Technol., 22, 521–536. DOI: 10.3109/10837450.2015.1135342.
  • 16. Parente M.E., Ochoa Andrade A., Ares G., Russo F., Jiménez-Kairuz Á., 2015. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmetic Sci., 37, 511–518. DOI: 10.1111/ics.12227.
  • 17. Saeed S., Ein-Mozaffari F., Upreti S.R., 2008. Using computational fluid dynamics to study the dynamic behavior of the continuous mixing of Herschel–Bulkley fluids. Ind. Eng. Chem. Res. 2008, 47, 7465–7475. DOI: 10.1021/ie800496x.
  • 18. Shafiei M., Balhoff M., Hayman N.W., 2018. Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel. Polymer, 139, 44–51. DOI: 10.1016/j.polymer.2018.01.080.
  • 19. Shafiei M., Bryant S., Balhoff M., Huh C., Bonnecaze R.T., 2017. Hydrogel formulation for sealing cracked wellbores for CO2 storage. Appl. Rheology, 27, 27–34. DOI: 10.3933/APPLRHEOL-27-64433.
  • 20. Singh V.K., Anis A., Banerjee I., Pramanik K., Bhattacharya M.K., and Pal K., 2014. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Mater. Sci. Eng., C. 44, 151–158. DOI: 10.1016/j.msec.2014.08.026.
  • 21. Sipos E., Szabo Z.I., Lőrinczi L., Ciurba A., 2015. Rheological behavior and microbiological studies of carbopol hydrogels. Stud. U. Babes-Bol. Che., 60 (1).
  • 22. Sipos E., Szász N., Vancea S., Ciurba A., 2014. Evaluation and selection of gel base for the formulation of dexpanthenol products. Trop. J. Pharm. Res., 13 (12), 1987–1992. DOI: 10.4314/tjpr.v13i12.5.
  • 23. Story A., Jaworski Z., 2017. A new model of cavern diameter based on a validated CFD study on stirring of a highly shear-thinning fluid. Chem. Pap., 71, 1255–1269. DOI: 10.1007/s11696-016-0119-y.
  • 24. Story A., Jaworski Z., Simmons M.J., Nowak E., 2018. Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank. Chem. Pap., 72, 593–602. DOI: 10.1007/s11696-017-0307-4.
  • 25. Varges P.R., Costa, C.M., Fonseca, B.S., Naccache, M.F., de Souza Mendes P., 2019. Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids, 4, 3. DOI: 10.3390/fluids4010003.
  • 26. Wichterle K., Wein O., 1975. Agitation of concentrated suspensions. CHISA ’75, Paper B4.6, Prague.
  • 27. Wilkens R.J., Miller J.D., Plummer J.R., Dietz D.C., Myers K.J., 2005. New techniques for measuring and modeling cavern dimensions in a Bingham plastic fluid. Chem. Eng. Sci., 60, 5269–5275. DOI: 10.1016/j.ces.2005.04.058.
  • 28. Wróblewska M., Słyż J., Winnicka K., 2019. Rheological and textural properties of hydrogels, containing sulfur as a model drug, made using different polymers types.Polimery J., 64 (3), 208–215. DOI: 10.14314/polimery.2019.3.6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54999eb7-75d8-4e18-a275-211372efcfa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.