PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Conjugate mixed convection of a micropolar fluid over a vertical hollow circular cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work conducts a numerical examination into the influence of a magnetic field and viscosity dissipation on the movement of a micropolar fluid over the surface of a vertical, hollow circular cylinder via conjugate mixed convection. In this investigation, we obtained a numerical solution for a non-linear differential equations-based modeling system by employing MATLAB and the bvp4c solver, which operates on a two-equation model. We show graphically how micropolar materials, conjugate heat transfer, viscous energy dissipation, buoyancy factors and magnetic field affect the temperature at the interface, local skin friction and heat transfer. By contrasting the acquired results with those found in the published research, which exhibit a high degree of concordance, the validity of the methodology is proven.
Rocznik
Strony
1--18
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
  • Mechanical Engineering, University of Medea, ALGERIA
autor
  • Mechanical Engineering, University of Medea, ALGERIA
  • Mechanical Engineering, University of Medea, ALGERIA
  • Mechanical Engineering, Biomaterials and Transport Phenomena, ALGERIA
Bibliografia
  • [1] Jilani G., Jayaraj S. and Ahmad M.A. (2002): Conjugate forced convection–conduction heat transfer analysis of a heat generating vertical cylinder.– International Journal of Heat and Mass Transfer, vol. 45, pp.331-341, https://doi.org/10.1016/S0017-9310(01)00140-5.
  • [2] Rani H. and Reddy G.J. (2011): Conjugate transient free convective heat transfer from a vertical slender hollow cylinder with heat generation effect.– Appl. Math, vol.1, pp.90-98, https://doi.org/10.5923/j.am.20110102.15.
  • [3] Kaya Ahmet (2011): The effect of conjugate heat transfer on MHD mixed convection about a vertical slender hollow cylinder.– Communications in Nonlinear Science and Numerical Simulation, vol.16, pp.1905-1916, https://doi.org/10.1016/j.cnsns.2010.08.021.
  • [4] Lukaszewicz G. (1999): Micropolar Fluids: Theory and Applications.– Springer Science & Business Media, https://link.springer.com/book/10.1007/978-1-4612-0641-5.
  • [5] Eringen A.C. (1966): Theory of micropolar fluids.– Journal of Mathematics and Mechanics, pp.1-18.
  • [6] Eringen A.C. (1972): Theory of thermomicrofluids.– Journal of Mathematical Analysis and Applications, vol.38, pp.480-496, https://doi.org/10.1016/0022-247X(72)90106-0.
  • [7] Ariman T., Turk M. and Sylvester N. (1973): Microcontinuum fluid mechanics-a review.– International Journal of Engineering Science, vol.11, pp.905-930, https://doi.org/10.1016/0020-7225(73)90038-4.
  • [8] Ariman T., Turk M. and Sylvester N. (1974): Applications of microcontinuum fluid mechanics.– International Journal of Engineering Science, vol.12, pp.273-293, https://doi.org/10.1016/0020-7225(74)90059-7.
  • [9] Gorla R.S.R. and Takhar H. (1987): Free convection boundary layer flow of a micropolar fluid past slender bodies.– International Journal of Engineering Science, vol.25, pp.949-962, https://doi.org/10.1016/0020-7225(87)90090-5.
  • [10] Gorla R.S.R. (1989): Combined forced and free convection in the boundary layer flow of a micropolar fluid on a continuous moving vertical cylinder.– International Journal of Engineering Science, vol.27, pp.77-86, https://doi.org/10.1016/0020-7225(89)90169-9.
  • [11] Chang C.-L. (2006): Buoyancy and wall conduction effects on forced convection of micropolar fluid flow along a vertical slender hollow circular cylinder.– International Journal of Heat and Mass Transfer, vol.49, pp.4932-4942, https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.037.
  • [12] Siddiqa S., Begum N., Md Hossain A., Abrar M.N., Gorla R.S.R. and Al-Mdallal Q. (2021): Effect of thermal radiation on conjugate natural convection flow of a micropolar fluid along a vertical surface.– Computers & Mathematics with Applications, vol.83, pp.74-83, https://doi.org/10.1016/j.camwa.2020.01.011.
  • [13] Bhargava R. and Rana P. (2011): Finite element solution to mixed convection in MHD flow of micropolar fluid along a moving vertical cylinder with variable conductivity.– Int. J. Appl. Math. Mech, vol.7, pp.29-51.
  • [14] Sivarami Reddy C., Ramachandra Prasad V. and Jayalakshmi K. (2021): Numerical simulation of natural convection heat transfer from a heated square cylinder in a square cavity filled with micropolar fluid.– Heat Transfer, vol.50, pp.5267-5285, https://doi.org/10.1002/htj.22123.
  • [15] Saidoune F., Bouaziz M. and Aziz A. (2021): Conjugate heat and mass transfer on steady mhd mixed convection flow along a vertical slender hollow cylinder with heat generation and chemical reaction effects.– Defect and Diffusion Forum, Trans. Tech. Publ., vol.406, pp.53-65, https://doi.org/10.4028/www.scientific.net/DDF.406.53.
  • [16] Alwawi F., Sulaiman I.M., Al-Swalmeh M.Z. and Yaseen N. (2022): Energy transport boosters of magneto micropolar fluid flowing past a cylinder: A case of laminar combined convection.– Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.236, pp.10902-10913, https://doi.org/10.1177/09544062221111055.
  • [17] Hassan H., Regnier N., Pujos C. and Defaye G. (2008): The effect of viscous dissipation on the polymer temperature during injection molding.– Proceedings of the 5th European Thermal-Sciences Conference, vol.48, No.6, pp.1199-1206.
  • [18] Kaya A. and Aydin O. (2014): Combined Effect of Viscous Dissipation on the Coupling of Conduction and Mixed Convection Along a Vertical Slender Hollow Cylinder.– Progress in Exergy, Energy, and the Environment, pp.595- 607, https://doi.org/10.1007/978-3-319-04681-5_56.
  • [19] Anantha Kumar K., Sugunamma V. and Sandeep N. (2020): Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model.– Journal of Thermal Analysis and Calorimetry, vol.139, pp.3661-3674, https://doi.org/10.1007/s10973-019-08694-8.
  • [20] Lund L.A., Zurni O., Ilyas K., Jawad R., El-Sayed M.S. and Asiful H.S. (2020): Magnetohydrodynamic (MHD) flow of micropolar fluid with effects of viscous dissipation and joule heating over an exponential shrinking sheet: triple solutions and stability analysis.– Symmetry, vol.12, pp.142, https://doi.org/10.3390/sym12010142.
  • [21] Kataria H.R., Mistry M. and Mittal A. (2022): Influence of nonlinear radiation on MHD micropolar fluid flow with viscous dissipation.– Heat Transfer, vol.51, pp.1449-1467, https://doi.org/10.1002/htj.22359.
  • [22] Waini I., Ishak A. and Pop I. (2022): Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects.– Neural Computing and Applications, vol.34, pp.3783-3794, https://doi.org/10.1007/s00521-021-06640-0.
  • [23] Alliche S.A. and Bouaziz M.N. (2018): Magnetic field and thermal radiation effects on mixed convection heat and mass transfer of micropolar fluid along a vertical slender hollow circular cylinder.– JP Journal of Heat and Mass Transfer, vol.15, pp.157-180, http://dx.doi.org/10.17654/HM015020157.
  • [24] Shampine L.F., Kierzenka J. and Reichelt M.W. (2000): Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c.– Tutorial notes 2000, pp.1-27.
  • [25] Mucoglu A. and Chen T. (1976): Buoyancy effects on forced convection along a vertical cylinder with uniform surface heat flux.– J. Heat Transfer, vol.98, pp.523-525, https://doi.org/10.1115/1.3450591.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54998c1e-207b-4f4b-83a3-27b141a1a0ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.