PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Designing a Highly Energetic PCL-GAP-PCL-based PU Elastomer; Investigation of the Effect of Plasticizers on Its Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glycidylazide polymer (GAP) has potential interest for the development of high-performance energetic propellants. Although GAP is a well-known and promising energetic polymer, propellants based on it suffer from poor mechanical and low-temperature properties. In order to improve the mechanical and thermal properties of GAP a promising idea would be the preparation of a tri-block copolymer of it with a polymer having good mechanical and thermal properties, such as polycaprolactone (PCL). In this work, we report a detailed investigation of the glass transition temperature (Tg) and viscosity of PCL-GAP-PCL samples incorporated with energetic plasticizers, BuNENA, TMETN, and BTTN. The results demonstrated that the Tg of PCL-GAP-PCL is influenced by the type of plasticizer. PCL-GAP-PCL was cured with TDI and a mixed curing system (IPDI/N100). The elastomer prepared with the mixing curing system showed excellent mechanical properties with 2.64 MPa and 138% elongation. The effects of the energetic plasticizers on the mechanical properties of the elastomer were investigated. Finally, the plasticized tri-block copolymer showed enhanced mechanical and thermal properties.
Rocznik
Strony
33--48
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
Bibliografia
  • [1] Kuan, H.-C.; Ma, C.-C. M.; Chang, W.-P.; Yuen, S.-M.; Wu, H.-H.; Lee, T.-M. Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite. Compos. Sci. Technol. 2005, 65(11-12): 1703-1710.
  • [2] Ma, M.; Kwon, Y. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-situ Preparation of Poly(THF-co-GAP)-based Polyurethane Energetic Binders. Polymers 2018, 10(5): 516-530.
  • [3] Santerre, J.; Woodhouse, K.; Laroche, G.; Labow, R. Understanding the Biodegradation of Polyurethanes: from Classical Implants to Tissue Engineering Materials. Biomaterials 2005, 26(35): 7457-7470.
  • [4] Kojio, K.; Fukumaru, T.; Furukawa, M. Highly Softened Polyurethane Elastomer Synthesized with Novel 1,2-Bis(isocyanate) Ethoxyethane. Macromolecules 2004, 37(9): 3287-3291.
  • [5] Ducruet, N.; Delmotte, L.; Schrodj, G.; Stankiewicz, F.; Desgardin, N.; Vallat, M. F.; Haidar, B. Evaluation of Hydroxyl Terminated Polybutadiene‐isophorone Diisocyanate Gel Formation during Crosslinking Process. J. Appl. Polym. Sci. 2013, 128(1): 436-443.
  • [6] Min, B. S.; Ko, S. W. Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone. Macromol. Res. 2007, 15(3): 225-233.
  • [7] Pisharath, S.; Ang, H. G. Synthesis and Thermal Decomposition of GAP–Poly(BAMO) Copolymer. Polym. Degrad. Stab. 2007, 92(7): 1365-1377.
  • [8] Frankel, M.; Grant, L.; Flanagan, J. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8(3): 560-563.
  • [9] Eroğlu, M.; Güven, O. Thermal Decomposition of Poly(glycidylazide) as Studied by High‐temperature FTIR and Thermogravimetry. J Appl. Polym. Sci. 1996, 61(2): 201-206.
  • [10] Ringuette, S.; Dubois, C.; Stowe, R. A.; Charlet, G. Synthesis and Characterization of Deuterated Glycidyl Azide Polymer (GAP). Propellants Explos. Pyrotech. 2006, 31(2): 131-138.
  • [11] Manu, S. K.; Varghese, T. L.; Mathew, S.; Ninan, K. N. Studies on Structure Property Correlation of Cross‐linked Glycidyl Azide Polymer. J. Appl. Polym. Sci. 2009, 114(6): 3360-3368.
  • [12] Mathew, S.; Manu, S. K.; Varghese, T. L. Thermomechanical and Morphological Characteristics of Cross‐linked GAP and GAP-HTPB Networks with Different Diisocyanates. Propellants Explos. Pyrotech. 2008, 33(2): 146-152.
  • [13] Chizari, M.; Bayat, Y. Synthesis and Kinetic Study of a PCL-GAP-PCL Tri-block Copolymer. Cent. Eur. J. Energ. Mater. 2018, 15(2): 243-257.
  • [14] Major-Gabryś, K.; Bobrowski, A.; Grabarczyk, A.; Dobosz, St. M. The Thermal and Structural Analysis of New Bicomponent Binders for Moulding Sands Consisting of Furfuryl Resin and Polycaprolactone (PCL). Arch. Metall. Mater. 2017, 62(1): 369-372.
  • [15] Major-Gabryś, K.; Grabarczyk, A.; Dobosz, St. M. Modification of Foundry Binders by Biodegradable Material. Arch. Foundry Eng. 2018, 18(2): 31-34.
  • [16] Kohga, M. From Cross‐linking to Plasticization – Characterization of Glycerin/HTPB Blends. Propellants Explos. Pyrotech. 2009, 34(5): 436-443.
  • [17] Kumari, D.; Balakshe, R.; Banerjee, S.; Singh, H. Energetic Plasticizers for Gun and Rocket Propellants. Rev. J. Chem. 2012, 2(3): 240-262.
  • [18] Bodaghi, A.; Shahidzadeh, M. Synthesis and Characterization of New PGN Based Reactive Oligomeric Plasticizers for Glycidyl Azide Polymer. Propellants Explos. Pyrotech. 2018, 43(4): 364-370.
  • [19] Shee, S. K.; Reddy, S. T.; Athar, J.; Sikder, A. K.; Talawar, M.; Banerjee, S.; Khan, M. A. S. Probing the Compatibility of Energetic Binder Poly-Glycidyl Nitrate with Energetic Plasticizers: Thermal, Rheological and DFT Studies. RSC Advances 2015, 5(123): 101297-101308.
  • [20] Liu, Y.; Wang, L.; Tuo, X.; Li, S.; Yang, W. A Study on the Microstructure of a Nitrate Ester Plasticized Polyether Propellant dissolved in HCl and KOH Solutions. J. Serb. Chem. Soc. 2010, 75(7): 987-996.
  • [21] Honary, S.; Orafai, H.; Shojaei, A. H. The Influence of Plasticizer Molecular Weight on Spreading Droplet Size of HPMC Aqueous Solutions using an Indirect Method. Drug Dev. Ind. Pharm. 2000, 26(9): 1019-1024.
  • [22] Dong, Q.; Li, H.; Liu, X.; Huang, C. Thermal and Rheological Properties of PGN, PNIMMO and P(GN/NIMMO) Synthesized via Mesylate Precursors. Propellants Explos. Pyrotech. 2018, 43(3): 294-299.
  • [23] Rao, K. P.; Sikder, A. K.; Kulkarni, M. A.; Bhalerao, M. M.; Gandhe, B. R. Studies on n‐Butyl Nitroxyethylnitramine (n‐BuNENA): Synthesis, Characterization and Propellant Evaluations. Propellants Explos. Pyrotech. 2004, 29(2): 93-98.
  • [24] Straessler, N. A.; Paraskos, A. J.; Kramer, M. P. Methods of Producing Nitrate Esters. Patent US 8658818, 2014.
  • [25] Gouranlou, F.; Kohsary, I. Synthesis and Characterization of 1,2,4-Butanetriol Trinitrate. Asian J. Chem. 2010, 22(6): 4221-4228.
  • [26] Standard Test Method for Tensile Properties of Plastics. Standard ASTM D638, West Conshohocken, PA, 2010.
  • [27] Fox, Jr, T. G.; Flory, P. J. Second‐order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. J. Appl. Phys. 1950, 21(6): 581-591.
  • [28] Flory, P. J. The Configuration of Real Polymer Chains. J. Chem. Phys. 1949, 17(3): 303-310.
  • [29] Sun Min, B. Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and its Propellants. Propellants Explos. Pyrotech. 2008, 33(2): 131-138.
  • [30] Chiou, B.-S.; Schoen, P. E. Effects of Crosslinking on Thermal and Mechanical Properties of Polyurethanes. J. Appl. Polym. Sci. 2002, 83(1): 212-223.
  • [31] Chen, T.-K.; Tien, Y.-I.; Wei, K.-H. Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nanocomposites. Polymer 2000, 41(4): 1345-1353.
  • [32] Chen, T. K.; Chui, J. Y.; Shieh, T. S. Glass Transition Behaviors of a Polyurethane Hard Segment based on 4,4‘-Diisocyanatodiphenylmethane and 1,4-Butanediol and the Calculation of Microdomain Composition. Macromolecules 1997, 30(17): 5068-5074.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5496c9a1-1c6c-48b3-8f59-3c064bf21db2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.