PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution of pure titanium during hydrostatic extrusion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Regarding severely deformed materials of potentially high applicability in various industry branches, their microstructure evolution during processing is of vast significance as it enables to control or adjust the most essential properties, including mechanical strength or corrosion resistance. Within the present study, the microstructure development of commercially pure titanium (grade 2) in the multi-stage process of hydrostatic extrusion has been studied with the use of the well-established techniques, involving electron backscatter diffraction as well as transmission electron microscopy. Microstructural deformation-induced defects, including grain boundaries, dislocations, and twins, have been meticulously analyzed. In addition, a special emphasis has been placed on grain size, grain boundary character as well as misorientation gradients inside deformed grains. The main aim was to highlight the microstructural alterations triggered by hydroextrusion and single out their possible sources. The crystallographic texture was also studied. It has been concluded that hydrostatically extruded titanium is an exceptionally inhomogeneous material in terms of its microstructure as evidenced by discrepancies in grain size and shape, a great deal of dislocation-type features observed at every single stage of processing and the magnitude of deformation energy stored. Twinning, accompanied by grain subdivision phenomenon, was governing the microstructural development at low strains; whereas, the process of continuous dynamic recrystallization came to the fore at higher strains. Selected mechanical properties resulting from the studied material microstructure are also presented and discussed.
Rocznik
Strony
art. no. e9, 2023
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30‑059 Krakow, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30‑059 Krakow, Poland
  • Academic Centre for Materials and Nanotechnology, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30‑059 Krakow, Poland
Bibliografia
  • 1. Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782-817. https://doi.org/10.1016/j.actamat.2012.10.038.
  • 2. Garbacz H, Semenova IP, Zherebtsov S, Motyka M. Nanocrystalline titanium Elsevier. Amstersdam. 2018. https://doi.org/10.1016/C2017-0-01574-4.
  • 3. Cao Y, Ni S, Liao X, Song M, Zhu Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R Reports. 2018;133:1-59. https://doi.org/10.1016/j.mser.2018.06.001.
  • 4. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu Y. Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM. 2016;68:1216-26. https://doi.org/10.1007/s11837-016-1820-6.
  • 5. Kawałko J, Wroński M, Bieda M, Sztwiertnia K, Wierzbanowski K, Wojtas D, Łagoda M, Ostachowski P, Pachla W, Kulczyk M. Microstructure of titanium on complex deformation paths: comparison of ECAP, KOBO and HE techniques. Mater Charact. 2018;141:19-31. https://doi.org/10.1016/j.matchar.2018.04.037.
  • 6. Wojtas D, Wierzbanowski K, Chulist R, Pachla W, Bieda-Niemiec M, Jarzębska A, Maj Ł, Kawałko J, Marciszko-Wiąckowska M, Wroński M, Sztwiertnia K. Microstructure-strength relationship of ultrafine-grained titanium manufactured by unconventional severe plastic deformation process. J Alloys Compd. 2020;837: 155576. https://doi.org/10.1016/j.jallcom.2020.155576.
  • 7. Lee J, Park S, Jeong H. Effect of strains on textural evolution of hydrostatically extruded niobium tubes. Mater Sci Technol (United Kingdom). 2020;36:1245-1249. https://doi.org/10.1080/02670836.2020.1759191.
  • 8. Lewandowska M, Garbacz H, Pachla W, Mazur A, Kurzydlowski KJ. Grain refinement in aluminium and the aluminium Al-Cu-Mg-Mn alloy by hydrostatic extrusion. Mater Sci Pol. 2005;23:279-86.
  • 9. Lee J, Jeong H, Park S. Effect of extrusion ratios on microstructural evolution, textural evolution, and grain boundary character distributions of pure copper tubes during hydrostatic extrusion. Mater Charact. 2019;158: 109941. https://doi.org/10.1016/j.matchar.2019.109941.
  • 10. Lee J, Jeong H, Park S. Effect of extrusion ratios on hardness, microstructure, and crystal texture anisotropy in pure niobium tubes subjected to hydrostatic extrusion. Trans Nonferrous Met Soc China. 2021;31:1689-99. https://doi.org/10.1016/S1003-6326(21)65608-X.
  • 11. Dyakonov GS, Mironov S, Semenova IP, Valiev RZ, Semiatin SL. Microstructure evolution and strengthening mechanisms in commercial-purity titanium subjected to equal-channel angular pressing. Mater Sci Eng A. 2017;701:289-301. https://doi.org/10.1016/j.msea.2017.06.079.
  • 12. Chen YJ, Li YJ, Walmsley JC, Dumoulin S, Roven HJ. Deformation structures of pure titanium during shear deformation. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:787-94. https://doi.org/10.1007/s11661-009-0040-x.
  • 13. Terada D, Inoue S, Tsuji N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J Mater Sci. 2007;42:1673-81. https://doi.org/10.1007/s10853-006-0909-7.
  • 14. Chen W, Xu J, Liu D, Bao J, Sabbaghianrad S, Shan D, Guo B, Langdon TG. Microstructural evolution and microhardness variations in pure titanium processed by high-pressure torsion. Adv Eng Mater. 2020;22:1901462. https://doi.org/10.1002/adem.201901462.
  • 15. Ansarian I, Shaeri MH, Ebrahimi M, Minarik P, Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. J Alloys Compd. 2019;776:83-95. https://doi.org/10.1016/j.jallcom.2018.10.196.
  • 16. Pachla W, Kulczyk M, Sus-Ryszkowska M, Mazur A, Kurzydlowski KJ. Nanocrystalline titanium produced by hydrostatic extrusion. J Mater Process Technol. 2008;205:173-82. https://doi.org/10.1016/j.jmatprotec.2007.11.103.
  • 17. Sitek R, Kaminski J, Spychalski M, Garbacz H, Pachla W, Kurzydlowski KJ. Hydrostatic extrusion and nano-hardness of nanocrystalline grade 2 titanium. J Nanosci Nanotechnol. 2015;15:4992-8. https://doi.org/10.1166/jnn.2015.10027.
  • 18. Topolski K, Garbacz H, Pachla W, Kurzydlowski KJ. The influence of the initial state on microstructure and mechanical properties of hydrostatically extruded titanium. Solid State Phenom. 2008;140:191-6. https://doi.org/10.4028/www.scientific.net/SSP.140.191.
  • 19. Topolski K, Pachla W, Garbacz H. Progress in hydrostatic extrusion of titanium. J Mater Sci. 2013;48:4543-8. https://doi.org/10.1007/s10853-012-7086-7.
  • 20. Tarasiuk J, Wierzbanowski K, Baczmański A. New algorithm of direct method of texture analysis. Cryst Res Technol. 1998;33:101-18.
  • 21. Yang W, Ruestes CJ, Li Z, Abad OT, Langdon TG, Heiland B, Koch M, Arzt E, Meyers MA. Micro-mechanical response of ultrafine grain and nanocrystalline tantalum. J Mater Res Technol. 2021;12:1804-15. https://doi.org/10.1016/j.jmrt.2021.03.080.
  • 22. Topolski K, Adamczyk-Cieślak B, Garbacz H. High-strength ultrafine-grained titanium 9999 manufactured by large strain plastic working. J Mater Sci. 2020;55:4910-25. https://doi.org/10.1007/s10853-019-04291-0.
  • 23. Moreno-Valle EC, Pachla W, Kulczyk M, Sabirov I, Hohenwarter A. Anisotropy of tensile and fracture behavior of pure titanium after hydrostatic extrusion. Mater Trans. 2019;60:2160-7. https://doi.org/10.2320/matertrans.MF201928.
  • 24. Sotniczuk A, Garbacz H. Nanostructured bulk titanium with enhanced properties-strategies and prospects for dental applications. Adv Eng Mater. 2021;23:2000909. https://doi.org/10.1002/adem.20200 0909.
  • 25. Chojnacka A, Kawalko J, Koscielny H, Guspiel J, Drewienkiewicz A, Bieda M, Pachla W, Kulczyk M, Sztwiertnia K, Beltowska-Lehman E. Corrosion anisotropy of titanium deformed by the hydrostatic extrusion. Appl Surf Sci. 2017;426:987-94. https://doi.org/10.1016/j.apsusc.2017.07.231.
  • 26. Kubacka D, Yamamoto A, Wieciński P, Garbacz H. Biological behavior of titanium processed by severe plastic deformation. Appl Surf Sci. 2019;472:54-63. https://doi.org/10.1016/j.apsusc.2018.04.120.
  • 27. Wojtas D, Mzyk A, Kawałko J, Imbir G, Trembecka-Wojciga K, Marzec M, Jarzȩbska A, Maj L, Wierzbanowski K, Chulist R, Pachla W, Sztwiertnia K. Texture-governed cell response to severely deformed titanium. ACS Biomater Sci Eng. 2021;7:114-21. https://doi.org/10.1021/acsbiomaterials.0c01034.
  • 28. Jarzębska A, Bieda M, Maj Ł, Chulist R, Wojtas D, Strąg M, Sułkowski B, Przybysz S, Pachla W, Sztwiertnia K. Controlled grain refinement of biodegradable zn-mg alloy: the effect of magnesium alloying and multi-pass hydrostatic extrusion preceded by hot extrusion, metall. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:6784-96. https://doi.org/10.1007/s11661-020-06032-4.
  • 29. Topolski K, Garbacz H, Pachla W, Kurzydlowski KJ. Homogeneity of bulk nanostructured titanium obtained by Hydrostatic extrusion. Mater Sci Forum. 2011;674:47-51. https://doi.org/10.4028/www.scientific.net/MSF.674.47.
  • 30. Zherebtsov S, Lojkowski W, Mazur A, Salishchev G. Structure and properties of hydrostatically extruded commercially pure titanium. Mater Sci Eng A. 2010;527:5596-603. https://doi.org/10.1016/j.msea.2010.05.043.
  • 31. Ma X, Zhao D, Yadav S, Sagapuram D, Xie KY. Grain-subdivision-dominated microstructure evolution in shear bands at high rates. Mater Res Lett. 2020;8:328-34. https://doi.org/10.1080/21663831.2020.1759155.
  • 32. Wert JA, Huang X, Winther G, Pantleon W, Poulsen HF. Revealing deformation microstructures. Mater Today. 2007;10:24-32. https://doi.org/10.1016/S1369-7021(07)70206-7.
  • 33. Hughes DA, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 1997;45:3871-86. https://doi.org/10.1016/S1359-6454(97)00027-X.
  • 34. Chen YJ, Li YJ, Walmsley JC, Dumoulin S, Skaret PC, Roven HJ. Microstructure evolution of commercial pure titanium during equal channel angular pressing. Mater Sci Eng A. 2010;527:789-96. https://doi.org/10.1016/j.msea.2009.09.005.
  • 35. Baczmanski A, Tidu A, Lipinski P, Humbert M, Wierzbanowski K. New type of diffraction elastic constants for stress determination. Mater Sci Forum. 2006;524-525:235-40. https://doi.org/10.4028/0-87849-414-6.235.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54960fa9-e5d5-4cbc-bd63-0cd24d302d78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.