PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Does Tofu Wastewater Conversions Nutrient Increase the Content of the Chlorella pyrenoidosa?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to analyze the lipid, carbohydrate and protein content of Chlorella pyrenoidosa after being treated with the tofu wastewater. The method used in this study was an experimental method with 4 treatments and 3 replications. The treatment was performed by administering different concentrations of the tofu wastewater to the C. pyrenoidosa. The concentrations used were 10%, 15% and 20%. Determination of these concentrations was based on the preliminary test. The main parameters observed were the lipid, carbohydrate and protein content of C. pyrenoidosa and the supporting parameters were the growth rate, doubling time and characteristics of the tofu wastewater. The study was conducted for 8 days using the batch culture method. In the exponential phase, the microalgae were harvested and then their contents were analyzed. The data obtained were analyzed using MS Office Excel 2016. The highest content of lipid, carbohydrate and protein of C. pyrenoidosa was in the treatment of 20% tofu wastewater, reaching 1.56%; 28.92%; and 28.92%, respectively. Meanwhile, the highest growth rate and the smallest doubling time in the treatment of 20% tofu wastewater accounted for 0.8264 day-1 and 0.0349 hours-1. Moreover, the rates of BOD and TSS of the tofu wastewater at the end of the study decreased. It can be concluded that administering different concentrations of the tofu wastewater can affect the lipid, carbohydrate and protein content of C. pyrenoidosa. It was suggested that further research is needed to conduct semi-continuous cultivation of C. pyrenoidosa using a higher density so that the results obtained can be optimized.
Słowa kluczowe
Rocznik
Strony
70--76
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran Malang 65145, Indonesia
  • MicroBase Research Group, Postgraduate Department, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine Universitas Airlangga, Surabaya 60115, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran Malang 65145, Indonesia
  • Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Undergraduate Students at Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
autor
  • Undergraduate Students at Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
autor
  • Undergraduate Students at Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
Bibliografia
  • 1. Ahmad H. and Adiningsih R. 2019. Efektivitas metode fitoremediasi menggunakan tanaman eceng gondok dan kangkung air dalam menurunkan kadar bod dan tss pada limbah cair industri tahu. Jurnal Farmasetis, 8(2), 31–38.
  • 2. APHA. 2017. 5210-B-2017: 5-Days BOD Test. Standard methods for the examination of water and wastewater. 23th ed. Washington DC: American Public Health Association.
  • 3. APHA. 2017. 2540-D-2017: Total Suspended Solids. Standard methods for the examination of water and wastewater. 23th ed. Washington DC: American Public Health Association.
  • 4. Arsad S., Stavrakakis C., Turpin V., Rossa P., Risjani Y., Sari L.A., Prasetiya F.S., Mouget J.L. 2019. Optimization of diatom Haslea ostrearia cultivation in different mediums and nutriens. IOP Conf. Series: Earth and Environmental Science, 236, 1–11.
  • 5. Assadad L., Utomo B.S.B., Sari R.N. 2010. Pemanfaatan mikroalga sebagai bahan baku bioetanol. Squalen, 5(2), 51–58.
  • 6. Bolgovics A., Viktoria B., Varbirio G., Krasznai E.A., Acs E., Kiss K.T., Borics G. 2019. Groups of small lakes maintain larger microalgal diversity than large ones. Science of the Total Environment, 678, 162–172.
  • 7. Boni J., Aida S., Leila K. 2018. Lipid extraction method from microalgae botryococcus braunii as raw material to make biodiesel with soxhlet extraction. IOP Conf. Series: Journal of Physics, 1095(1), 1–7.
  • 8. Harahap P.S., Susanto A.B., Susilaningsih D., Delicia Y.R. 2013. Pengaruh substitusi limbah cair tahu untuk menstimulasi pembentukan lipida pada Chlorella sp. Journal of Marine Research, 2(1), 80–86.
  • 9. Ifmaily. 2018. Penetapan kadar pati buah sukun (Artocarpus altilis L) dengan metode Luff Schoorl. Chempublish Journal, 3(1), 1–10.
  • 10. Khan M.I., Shin J.H., Kim J.D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact, 17(1), 1–21.
  • 11. Kim S.K. 2015. Handbook of Marine Microalgae: Biotechnology Advances. San Diego, United States: Elsevier Science Publishing Co Inc. pp 604.
  • 12. Larasati D., Elystia S., Muria S.R. 2019. Pengaruh pemberian limbah cair tahu dan fotoperiod terhadap kadar glukosa pada kultivasi mikroalga Scenedesmus sp. Jom FTEKNIK, 6(1), 1–6.
  • 13. Munawaroh U., Sutisna M., Pharmawati K. 2013. Penyisipan parameter pencemar lingkungan pada limbah cair industry tahu menggunakan Efektif Mikroorganisme 4 (EM4) serta pemanfaatannya. Teknik Lingkungan Itenas, 2(1), 1–12.
  • 14. Naidoo S. and Olaniran A.O. 2014. Treated wastewater effluent as a source of microbial pollution of surface water resources. International Journal of Environmental Research and Public Health, 11, 249–270.
  • 15. Negi S., Barry A.N., Friedland N., Sudasinghe N., Subramanian S., Pieris S., Sayre R. 2016. Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. Journal of Applied Phycology, 28(2), 803–812.
  • 16. Nicoletti M. 2016. Microalgae Nutraceuticals. Foods, 5 (54), 1–13.
  • 17. Permatasari N.K., Pangestika W., Saksono N. 2018. Tofu wastewater treatment using contact glow discharge electrolysis method and air injection. E3S Web of Conferences, 67, 1–5.
  • 18. Prayitno J. 2016. Pola pertumbuhan dan pemanenan biomassa dalam fotobioreaktor mikroalga untuk penangkapan karbon. Jurnal Teknologi Lingkungan, 17(1), 45–52.
  • 19. Putri D., Ulhidayati A., Musthofa I.A., Wardani A.K. 2018. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium. IOP Conference Series: Earth and Environmental Science, 131(1), 1–6.
  • 20. Rosaini H., Rasyid R., Hagramida. 2015. Penetapan kadar protein secara kejehdahl beberapa makanan olahan Kerang Remis (Corbiculla moltkiana Prime) dari Danau Singakarak. Jurnal Farmasi Higea. 7(2), 120–128.
  • 21. Rosenberg J.N., Kobayashi N., Barnes A., Noel E.A., Betenbaugh M.J., Oyler G.A. 2014. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PloS one, 9(4), 1–13.
  • 22. Salim M.A. 2013. Penggunaan limbah cair tahu untuk meningkatkan pertumbuhan dan produksi biodisel dari mikroalga Scenedesmus sp. Jurnal ISTEK, VII (1), 82–98.
  • 23. Sigalingging F., Padil A., Muria S.R. 2019. Kultivasi mikroalga menggunakan media AF6 berdasarkan perbedaan volume Solution A media AF6. Jom FTEKNIK, 6(1), 1–5.
  • 24. Simatupang D., Restuhadi F., Dahril T. 2017. Pemanfaatan simbiosis mikroalga Chlorella sp. dan EM4 untuk menurunkan kadar polutan limbah cair sagu. Jom FAPERTA, 4(1), 1–13.
  • 25. Singh A., Nigam P.S., Murphy J.D. 2011. Mechanism and Challenges in Commercialisation of Algal Biofuels. Bioresource Technology, 102, 26–34.
  • 26. Singh N.K. and Dhar D.W. 2010. Microalgal remediation of sewage effluent. Proc Indian Natn Sci Acad, 76(4), 209–221.
  • 27. Vrushali S. and Kaustav C. 2014. Sewage treatment and reuse – a step towards water conservation. International Science Journal, 1(2), 15–22.6
  • 28. Widayat W., Philia J., Wibisono J. 2018. Liquid waste processing of tofu industry for biomass production as raw material biodiesel production. IOP Conf. Series: Earth and Environmental Science, 248(1), 1–5.
  • 29. Ridho W.A., Hartati R., Harmoko. 2018. Kandungan nutrisi Spirulina platensis yang dikultur pada media yang berbeda. Jurnal Ilmu Kelautan, 13(3), 167–170.
  • 30. Yudhistira B., Andriani M., Utami R. 2016. Karakterisasi: Limbah cair industri tahu dengan koagulan yang berbeda (Asam asetat dan kalsium sulfat). Journal of Sustainable Agriculture, 31(2), 137–145.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-549136df-2e9d-426f-b794-469077563fc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.