PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of a novel UV-curable prepolymer 1,3-bis[(3-ethyl-3-methoxyoxetane)propyl]tetramethyldisiloxane and study on its UV-curing properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Precursor 3-ethyl-3-hydroxymethyloxetane was synthesized with trihydroxypropane and diethyl carbonate as the main raw materials. Intermediate 3-ethyl-3-allylmethoxyoxetane was synthesized with 3-ethyl-3-hydroxymethyloxetane and allyl bromide. Prepolymer 1,3-bis[(3-ethyl-3-methoxyoxetane)propyl]tetramethyldisiloxane was synthesized with 3-ethyl-3-allylmethoxyoxetane and 1,1,3,3-tetramethyldisiloxane. Cationic photoinitiator triarylsulfonium hexafluoroantimonate of 3 wt% was added to the prepolymer, and a novel kind of photosensitive resin was prepared. Structures of the compounds obtained at individual stages of the synthesis were analyzed and characterized by FTIR and 1H-NMR. Photo-DSC analysis showed that the prepolymer had excellent photosensitivity. Thermogravimetric analysis (TG) revealed that the ultraviolet (UV)-cured samples owned excellent thermal stabilities of up to 405°C. And the mechanical properties of the UV-cured samples were tested by the universal material testing machine, giving 25.95 MPa of tensile strength, 2,935.15 MPa of elastic modulus, and 4.09% of elongation at break.
Wydawca
Rocznik
Strony
371--382
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Nanchang University, Nanchang, 330000, Jiangxi Province, China
autor
  • School of Materials Science and Engineering, Nanchang University, Nanchang, 330000, Jiangxi Province, China
  • School of Materials Science and Engineering, Nanchang University, Nanchang, 330000, Jiangxi Province, China
autor
  • School of Materials Science and Engineering, Nanchang University, Nanchang, 330000, Jiangxi Province, China
Bibliografia
  • [1] Decker C. Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun. 2003;23(18):1067–93. https://doi.org/10.1002/marc.200290014.
  • [2] Shirai M. Reworkable UV curing materials. Prog Organic Coat. 2007;58(2–3):158–65. https://doi.org/10.1016/j.porgcoat.2006.08.022.
  • [3] Xie P, Hu L, He J, Kang W, Yang W. Mechanism and solutions of appearance defects on microfluidic chips manufactured by UV-curing assisted injection molding. J Polym Eng. 2017;37(5):493–503. https://doi.org/10.1515/polyeng-2016-0153.
  • [4] Sangermano M, Razza N, Crivello JV. Cationic UV-curing: Technology and applications. Macromol Mater Eng. 2014;299(7):775–93. https://doi.org/10.1002/mame.201300349.
  • [5] Kraft V, Schumann C, Salzmann D, Nopper H, Weyhe D, Schenk A. Towards realistic organ models for 3D printing and visualization. Curr Dir Biomed Eng. 2021;7(1):166–70. https://doi.org/10.1515/cdbme-2021-1036.
  • [6] Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Den Mater. 2016;32(1):54–64. https://doi.org/10.1016/j.dental.2015.09.018.
  • [7] Zhang LJ, Wu CB, Yang F, Geng XY, Li MQ, Xiao JJ. Preparation and characterization of UV curable hybrid system based on free radical and cationic mechanism. Appl Mech Mater. 2014;470:141–45. https://doi.org/10.4028/www.scientific.net/AMM.470.141.
  • [8] Park YJ, Lim DH, Kim HJ, Park DS, Sung IK. UV and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int J Adhes Adhesives. 2012;29(7):710–7. https://doi.org/10.1016/j.ijadhadh.2009.02.001.
  • [9] Cho JD, Ju HT, Hong JW. Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles. J Polym Sci Part A. 2010;43(3):658–70. https://doi.org/10.1002/pola.20529.
  • [10] Temel G, Enginol B, Aydin M, Balta DK, Arsu N. Photopolymerization and photophysical properties of amine linked benzophenone photoinitiator for free radical polymerization. J Photochem Photobiol A. 2011;219(1):26–31. https://doi.org/10.1016/j.jphotochem.2011.01.012.
  • [11] Sipani V, Kirsch A, Scranton AB. Dark cure studies of cationic photopolymerizations of epoxides: Characterization of kinetic rate constants at high conversions. J Polym Sci Part A. 2004;42(17):4409–16. https://doi.org/10.1002/pola.20209.
  • [12] Noè C, Hakkarainen M, Sangermano M. Cationic UV-curing of epoxidized biobased resins. Polymers. 2020;13(1):89. https://doi.org/10.3390/polym13010089.
  • [13] Noè C, Malburet S, Milani E, Bouvet-Marchand A, Graillot A, Sangermano M. Cationic UV-curing of epoxidized cardanol derivatives. Polym Int. 2020;69(8):668–74. https://doi.org/10.1002/pi.6031.
  • [14] Cho JD, Hong JW. Curing kinetics of UV-initiated cationic photopolymerization of divinyl ether photosensitized by thioxanthone. J Appl Polym Sci. 2010;97(3):1345–51. https://doi.org/10.1002/app.21838.
  • [15] Heilen W, Herrwerth S. Silicone resins and their combinations. Hannover, Germany: Vincentz Network, 2015.
  • [16] Bajaj P, Gupta DC. Copolymerization of styrene and acrylonitrile with functional silanes. Eur Polym J. 1979;15(3):271–5. https://doi.org/10.1016/0014-3057(79)90175-7.
  • [17] Murias P, Maciejewski H, Galina H. Epoxy resins modified with reactive low molecular weight siloxanes. Eur Polym J. 2012;48(4):769–73. https://doi.org/10.1016/j.eurpolymj.2012.01.009.
  • [18] Yu Z, Cui A, Zhao P, Wei H, Hu F. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system. J Appl Biomater Fundam Mater. 2018;16(1):170–6. https://doi.org/10.1177/2280800017753053.
  • [19] Huang B, Han L, Wu B, Chen H, Zhou W, Lu Z. Application of Bis [2-(3,4-epoxycyclohexyl) ethyl]octamethyltetrasiloxane in the preparation of a photosensitive resin for stereolithography 3D printing. J Wuhan Univ Technol. 2019;34(6):236–44. https://doi.org/10.1007/s11595-019-2215-7.
  • [20] Khalaf HI, Wady AN, Daham HK. Synthesis and characterization of new optically active poly(amideimide) s derived from n,n′-(pyromellitoyl) bis-l-tyrosine and various diamines. Mater Sci. 2013;31(1):43–51. https://doi.org/10.2478/s13536-012-0077-1.
  • [21] Altowyan AS, Ahmed HA, Gomha SM, Mostafa AM. Optical and thermal investigations of new schiff base/ester systems in pure and mixed states. Polymers. 2021;13(11):1687. https://doi.org/10.3390/polym13111687.
  • [22] Suresh J, Karthik S, Arun A. Photocrosslinkable polymer based on 4-(3-(2,4-dichlorophenyl)-3-oxoprop-1-enyl) phenylacrylate: Synthesis, reactivity ratio, and crosslinking studies. Mater Sci. 2016;34(4):834–44. https://doi.org/10.1515/msp-2016-0117.
  • [23] Shi Y, Ma W, Wang J, Mo J. 2-ethy-4-methylimidazole terminated polyurethane prepolymer as functional latent curing agents for epoxy resin crosslinking. J Macromol Sci Part A. 2019;56(8):750–8. https://doi.org/10.1080/10601325.2019.1586438.
  • [24] Rusu MC, Block C, Van Assche G, Van Mele B. Influence of temperature and UV intensity on photo-polymerization reaction studied by photo-DSC. J Thermal Anal Calorimetry. 2012;110(1):287–94. https://doi.org/10.1007/s10973-012-2465-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-548f3011-ec05-4997-a75b-8d1fe0e307d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.