Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As a tool for high precision deformation monitoring in broader areas, interferometric (In-SAR) time series of space-born Synthetic aperture radar (SAR) imagery are used. Nowadays, ERS, Envisat archives and Sentinel-1 images are open for the public to analyse slow moving landslides activated between 1990 and 2017. Since Sentinel-1 satellites are considered to be the workhorse of EO by the ESA during next decades, it is important to assess its applicability in landslide monitoring and mapping. In this paper, the southern part of Dunaszekcső village was analysed with PSI interferometric stacking algorithm, using SAR imagery. The advantages and limitations of the applied interferometric stacking techniques and sensors have been analysed, such as the movement history of the test site between 1992 and 2017. It was proven that Sentinel-1 PSI scatterers far exceeds the spatial coverage obtained by earlier sensors. Two orbital geometries of Sentinel-1 enabled larger spatial coverage and extract 2D displacements. The comparison of the two geometries, however, was only possible for small surfaces in the area of interest. The displacement data in the central part of the study site indicate the subsidence of the sliding block along the escarpment and in the east its movement towards the Danube. This displacement then triggered the uplift of the floodplain edges, or generated a slight eastward displacement.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
87--105
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Cartography and GIS, 7624 Pécs Ifjúság Str. 6., Hungary
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Cartography and GIS, 7624 Pécs Ifjúság Str. 6., Hungary
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Physical and Environmental Geography, 7624 Pécs Ifjúság Str. 6, Hungary
autor
- Sarmap SA, Cascio di Barico 10, Purasca, Switzerland
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Cartography and GIS, 7624 Pécs Ifjúság Str. 6., Hungary
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Physical and Environmental Geography, 7624 Pécs Ifjúság Str. 6, Hungary
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Physical and Environmental Geography, 7624 Pécs Ifjúság Str. 6, Hungary
autor
- Sarmap SA, Cascio di Barico 10, Purasca, Switzerland
autor
- University of Pécs, Faculty of Sciences, Institute of Geography and Earth Sciences, Dept. of Cartography and GIS, 7624 Pécs Ifjúság Str. 6., Hungary
autor
- Sarmap SA, Cascio di Barico 10, Purasca, Switzerland
Bibliografia
- Balogh J., Schweitzer F., 2011. Felszínmozgásos folyamatok a Duna Gönyű–Mohács közötti magasparti szakaszain (Mass movements along the Danubian high bluff between Gönyű and Mohács). [in:] F. Schweitzer (ed.), Katasztrófák tanulságai. Stratégiai jellegű természetföldrajzi kutatások (Conclusions of catastrophes. Physical geographical researches for strategic purposes). Magyar Tudományos Akadémia Földrajztudományi Kutatóintézete, Budapest, 101–142.
- Bányai L., Mentes Gy., Újvári G., Kovács M., Czap Z., Gribovszki K., Papp G., 2014. Recurrent landsliding of a high bank at Dunaszekcső, Hungary: Geodetic deformation monitoring and finite element modelling. Journal of Geodynamics 47, 130–141.
- Bugya T., Fábián Sz.Á., Görcs N. L., Kovács I.P., Radvánszky B, 2011. Surface changes on a landslide affected high bluff in Dunaszekcső (Hungary). Central European Journal of Geosciences 3, 119–128.
- Chen Q., Cheng H., Yang Y., Liu G., Liu L., 2014. Quantification of mass wasting volume associated with the giant landslide Daguangbao induced by the 2008 Wenchuan earthquake from persistent scatterer InSAR. Remote Sens. Environ. 152, 125–135.
- Del Ventisette C., Ciampalini A., Calò F., Manunta M., Paglia L., Reichenbach P., Colombo D., Mora O., Strozzi T., Garcia I., Mateos R., Herrera G., Füsi B., Graniczny M., Przylucka M., Retzo H., Moretti S., Casagli N., Guzzetti F., 2013. Exploitation of large archives of ERS and ENVISAT C-Band SAR data to characterize ground deformation. Remote Sensing 5, 3896–3917.
- Dövényi Z., 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary). MTA Földrajztudományi Kutatóintézet, Budapest.
- Egri Gy., Párdányi J., 1968. Dunaújvárosi magaspartok állékonyság vizsgálata (Sability analysis of high bluffs at Dunaújváros). Műszaki Tervezés (Engineering Design) 7, 19–24.
- ESA 2013 Sentinel-1 User Handbook, Online 29.12.2017 https://sentinels.copernicus.eu/documents/247904/685163/Sentinel-1_User_Handbook.
- Ferretti A., Prati C., Rocca F., 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 39, 8–20.
- Ferretti A., 2014. Satellite InSAR data. Reservoir monitoring from space. EAGE Publications, The Netherlands.
- Ferretti A., Prati C., Rocca F., 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 38, 2202–2212.
- Fodorné T., Horváth Zs., Scheuer Gy., Schweitzer F., 1981. Dunakömlőd–Paks közötti dunai magaspart mérnökgeológiai térképezése és vizsgálata (Engineering geological mapping of the high bluff between Dunakömlőd and Paks). Földtani Közlöny (Bulletin of the Hungarian Geological Society) 111, 258–280.
- Glade T., Anderson M., Crozier M.J., (eds.) 2005. Landslide Hazard and Risk. John Wiley and Sons, Chichester.
- Györké Z., Scheuer Gy., Vágóné I., 1975. Magaspartok állékonyságvizsgálata (Analysis of the stability of high bluffs). FTI Évkönyv (FTI year-book) 1950–1975, 133–138.
- Hein A., 2004. Processing of SAR data, Fundamentals, signal processing, interferometry. Springer, Berlin, Heidelberg New York.
- Herrera G., Gutiérrez F., García-Davalillo J.C., Guerrero J., Notti D., Galve J.P., Fernández-Merodo J.A., Cooksley G., 2013. Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 128, 31–43.
- Herrera G., Notti D., García-Davalillo J.C., Mora O., Cooksley G., Sánchez M., Arnaud A., Crosetto M., 2010. Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 8, 195–206.
- Horváth Zs., Scheuer Gy., 1976. A dunaföldvári partrogyás mérnökgeológiai vizsgálata (Engineering geological analysis of surface displacements at Dunaföldvár). Földtani Közlöny (Bulletin of the Hungarian Geological Society) 106, 425–440.
- Horváth Zs., Szilvágyi I., Szörényi J., 1975. Csúszásveszélyes területek vizsgálata és nyilván-tartása (The analysis and inventory of areas hazarded by landslides). FTI Évkönyv (FTI year-book) 1950–1975, 130–132.
- Karácsonyi S., Scheuer Gy., 1972. A dunai magaspartok építésföldtani problémái (Engineering geo-logical problems of the Danubian high bluffs). Földtani Kutatás (Geological Research) 15, 71–83.
- Kaszás F., Kraft J., 2009. A dunaszekcsői magaspart rogyásos suvadása: Nem nyugszanak a dunai magaspartok! (Landslides of the Dunaszekcső high bluff: High bluffs are active!). Mélyépítő tükörkép magazin (Civil Engineering Magazine) 8, 35–39.
- Kenesei J., Marokházi G., Nagy J., 2005. Mozgásveszélyes Dunamenti és Balaton parti magas-partok veszélyelháritási munkáinak tanulmányterve (Plan of the prevention works at landslide endangered high bluffs along the Danube and the Lake Balaton). Manuscript.
- Kézdi Á., 1970. A dunaújvárosi partrogyás (Landslide at Dunaújváros). Mélyépítéstudományi Szemle (Civil Engineering Review) 20, 281–297.
- Kovács I. P., Fábián Sz. Á., Radvánszky B., Varga G., 2015. Dunaszekcső Castle Hill: Landslides Along the Danubian Loess Bluff. [in:] D. Lóczy (ed.), Landscapes and Landforms of Hungary. Springer International, Switzerland, 113–120.
- Kraft J., 2011. Dunai magaspart dunaszekcsői részletének rogyásos suvadásai (Landslides of the Dunaszekcső high bluff). [in:] Á. Török, B. Vásárhelyi (eds.), Mérnökgeológia – Kőzetmechanika (Engineering geology – Rock mechanics). Hantken Kiadó, Budapest, 93–104.
- Moyzes A., Scheuer Gy., 1978. A dunaszekcsői magaspartok mérnökgeológiai vizsgálata (Engineering geological analysis of the Dunaszekcső high bluff). Földtani Közlöny (Bulletin of the Hungarian Geological Society) 108, 213–226.
- Pasquali P., Cantone A., Riccardi P., Defilippi M., Ogushi F., Gagliano S., Tamura M., 2014. Mapping of ground deformations with interferometric stacking techniques. [in:] F. Holecz, P. Pasquali, N. Milisavljevic (eds.), Land applications of radar remote sensing. Intech, DOI: 10.5772/55833, 234–259.
- Pécsi M., 1956. Adatok a fiatal kéregmozgások szerepére és mértékére a Duna völgyben (Data on the role and rate of crustal movements in the Danube Valley). Tud. Gyűjtemény (Scientific Collection) 9, 13–26.
- Pécsi M., 1959. A magyarországi Dunavölgy kialakulása és felszínalaktana (The geomorphology and surface development of the Danube Valley). Akadémiai Kiadó, Budapest.
- Pécsi M., 1971. Az 1970. évi Dunaföldvári földcsuszamlás. Földrajzi Értesítő (Hungarian Geographical Bulletin) 19, 233–238.
- Pécsi M., Schweitzer F., 1995. The lithostratigraphical, chronostratigraphical sequence of Hungarian loess profiles and their geomorphological position. Loess in Form 3, 31–61.
- Scheuer Gy., 1979. A dunai magaspartok mérnökgeológiai vizsgálata (Engineerig geological anal-sis of Danubian high bluf). Földtani Közlöny (Bulletin of the Hungarian Geological Society) 109, 230–254.
- Schmiedt E.R., 1966. A dunaújvárosi 1964. évi partomlás (Bank failure at Dunaújváros in 1964).MÁFI Évi Jelentése 1964 (Annual Report of the Hungarian Geological Society on 1964), 579–584.
- Singleton A., L i Z., Hoey T., Muller J.P., 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 147, 133–144.
- Sowter A., Bin Che Amat M., Cigna F., Marsh S., Athab A., Alshammari L., 2016. Mexi-co City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation 52, 230–242.
- Tomás R., L i Z., Liu P., Singleton A., Hoey T., Cheng X., 2014. Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferom-etry. Geophys. J. Int. 197, 213–232.
- Tóth I., Scheuer Gy., Vermes J., 1968. Mérnökgeológiai megfigyelések a rácalmási suvadással kapcsolatban (Engineering geological observations at the Rácalmás landslide). Mérnökgeológiai Szemle (Engineering Geology Review) 4, 13–27.
- Újvári G., Mentes Gy., Bányai L., Kraft J., Gyimóthy A., Kovács J., 2009. Evolution of a bank failure along the River Danube at Dunaszekcső, Hungary. Geomorphology 109, 197–209.
- Wasowski J., Bovenga F., 2015. Remote sensing of landslide motion with emphasis on satellite multitemporal interferometry applications: an overview. [in:] T. Davies (ed.), Landslide hazards, risk, and disasters. Elsevier, Amsterdam, 345–403.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSWprzeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-548ed0ac-af78-4138-9186-080811a10009