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Abstract: A researcher testing a model will frequently question the reliability of the test
results, understanding well the intuition that verification performed on a handful of cases
is less reliable than verification based on very large numbers of cases. Because a limited
number of verification cases happens pretty often in very specific domains, a question of
practical importance is, thus, how reliable is a reported reliability measure.
We propose a methodology based on deriving confidence intervals over various measures
of accuracy of Bayesian network models by means of bootstrap confidence intervals. We
evaluate our approach on ROC and calibration curves derived for a model derived from an
UC Irvine Machine Learning Repository data set and a sizeable (over 300 variables) prac-
tical model constructed using expert knowledge and evaluated on merely 66 accumulated
real patient cases. We show how increasing the number of test cases impacts the width of
confidence intervals and how this can aid in estimating a reasonable number of verification
cases that will increase the confidence in model reliability.
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1. Introduction

Bayesian networks (BNs) [13] allow for intuitive, flexible, yet theoretically sound,
modeling of uncertain domains. They are acyclic directed graphs, in which nodes
represent random variables and edges represent direct dependencies between pairs
of variables. These dependencies are expressed numerically by means of conditional
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probability distributions of every node conditional on its direct predecessors (parents)
in the graph.

BN models readily combine a variety of available information sources, such as
data and expert opinion. A variety of methods for building Bayesian network models
have been devised. When data are readily available, networks can be learned automat-
ically [14,4,16]. When no data are available, networks can be entirely elicited from
experts (e.g., [5], described later in this paper). Combinations of the two approaches
can be used in all cases when some data are available.

BN models are compact representations of the joint probability distribution
(JPD) over the variables that they represent. Given an observation of a subset of BN’s
variables (evidence), it is possible to calculate the conditional posterior probability
distribution over the remaining variables. This probability can be used for risk assess-
ment, diagnosis, prognosis, and other tasks. Before a Bayesian network model can be
embedded into a decision support system, one would like to know its reliability in
terms of the accuracy of its results. The problem is of particular importance in all
applications where a potential system error may cause serious practical implications,
such as in most medical applications. Arguably the strongest, objective way of assess-
ing the accuracy of a system is to test the system on a set of cases that it has never
seen. Several statistical methods are used for assessing different aspects of model
quality, such as accuracy, sensitivity and specificity, receiver operating characteristic
(ROC) curves, area under the ROC curve (AUC), calibration curve, etc. [8,9,12,6,7].

When the network has been learned from data, one can set aside a subset of data
and use that subset for the purpose of verification after learning the network from the
remaining (training) records. When a system has been constructed from expert opin-
ion, one can collect independently real cases and use these for verification. In both
cases, the number of verification cases is usually limited, either because of lack of
data (for example, one might hope that there are not too many data records for seri-
ous airplane malfunctions; a limited number of patients is seen with some rare disor-
ders) or because setting aside data records for verification purposes takes them away
from the learning set and reduces the quality of the model at the outset. A researcher
testing a model on a limited number of cases will frequently question the reliability
of the verification result, understanding well the intuition that tests performed on a
handful of cases are less reliable than those based on very large numbers of cases.
After all, a limited number of cases will rarely cover all important elements of the
model. Practical questions of vital importance are, thus, how reliable is a reported
reliability measure and is there a need for more cases for reliable verification.

In this paper, we address these questions by deriving confidence intervals over
various measures of accuracy of Bayesian network models. Our approach is based on
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producing bootstrap confidence intervals from the available verification data. These
intervals are going to be broad when the number of verification cases is small and
narrow when their number is large. Too broad confidence intervals will indicate the
need for more verification cases and will help in evaluating the usefulness of a new
decision aid. Such approach is well established for ROC curves [15]. Furthermore,
we propose to analyze the size of confidence intervals for a subset of the testing set. If
the size of a confidence interval does not change too much for a smaller subset of test
cases, it means that bringing more data will not increase significantly the reliability
of the evaluation of the model.

We evaluate our approach on ROC and calibration curves derived for three
Bayesian network models: (1) two models learned automatically from the Cover Type
data set [1] available from the Irvine Machine Learning Repository, and (2) a sizeable
(over 300 variables) practical model for cancer therapy planning, constructed using
experts’ knowledge for representing the tumor-, lymph nodes- and metastasis staging
(TNM staging for laryngeal cancer)[17]. In (2), the number of patient records avail-
able for validation is small (only 66 prior patient cases), so the question of model
reliability is of vital practical interest. In all cases, we show how increasing the num-
ber of test cases impacts the width of confidence intervals.

The remainder of this paper is structured as follows. Section 2. explains two
widely used methods for the assessment of model accuracy: ROC curves and cal-
ibration curves. Section 3. describes our approach to deriving confidence intervals
over model validation measures based on bootstrap confidence intervals. Section 4.
describes out experiments testing our method in practice.

2. Model Quality Validation Methods

In this section, we review two important measures of accuracy of probabilistic sys-
tems: (1) ROC curves, and (2) calibration curves.

2.1 Receiver Operating Characteristic (ROC) Curves

Several measures of accuracy have been proposed for systems performing tasks such
as classification, prediction, or diagnosis. The most straightforward method is accu-
racy, which, unfortunately does not give sufficient insight into system’s performance.
When the asymmetry among classes is very large, a system betting always on the
prevalent class will perform well, while it may be of practical importance to identify
correctly unlikely classes (e.g., rare but serious disorders in the domain of medicine)
at the expense of overall accuracy. Much better measure of accuracy are per class
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parameters known as sensitivity and specificity, which are expressing the system’s
ability to identify the class correctly when present and when absent, respectively.
Most researchers report evaluation results in a confusion matrix, which is a table list-
ing the total number of correctly and incorrectly identified instances for each of the
classes.

Better yet in characterizing the quality of a system is a plot known as receiver
operating characteristic (ROC) curve [8,9], which shows the tested system’s abil-
ity to identify a class. The ROC curve plots the true positive rate (i.e., sensitivity)
as a function of the false positive rate (1−specificity) and shows the ability of a
model to distinguish a class for a continuum of decision criteria. The closer an ROC
curve is to the upper left corner (0,1) (i.e., to perfect values of sensitivity=1.0 and
specificity=1.0), the better the model. When the decision criterion (e.g., a probability
threshold) for choosing a class is changed, the sensitivity and specificity for this class
also change, within the constraints shown by the ROC curve. The ROC curve can
be seen as a exhaustive collection of confusion matrices, as each point on the ROC
curve corresponds to one possible matrix, resulting from the modeler’s decision when
to identify a class and what sensitivity to choose. The ROC curve shows clearly the
compromise that the designer of a decision support system has to make by choos-
ing a threshold (and fixing the combination of sensitivity and specificity values), that
optimizes the utility of a decision. Figure 1 shows ROC curves for a collection of
models predicting the day of female ovulation in the context of a model for fertility
awareness [11]. The curves illustrate the idea that the exact values of sensitivity and
specificity are the result of a designer’s choice. When the model is used by a couple
seeking pregnancy, the optimal point and the optimal model are different than when
it is used by couples who want to avoid pregnancy. In the latter case, one would want
to choose a model with near perfect sensitivity, i.e., with almost-zero false negatives.

Similarly to sensitivity and specificity, the ROC curve is meaningful only in
expressing the system’s ability to detect a single class. Whenever a system focuses
on detecting multiple classes, or multiple grades of a single class, the ROC curve
is plotted for a single class and a single value with all remaining classes or values
lumped together as a complement of the class in focus.

2.2 Calibration curve

A less popular but not less important measure of quality of probabilistic systems,
such as those based on Bayesian networks, is their accuracy in probability estimates.
When a system derives the probability of cancer to be 0.07, for example, one would
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Fig. 1. A collection of ROC curves for a collection of models predicting the day of ovulation [11].

like the actual prevalence of cancer among patients with similar characteristics to be
close to 7%. The main reason for importance of precision in probability estimates is
that these are fundamental in decision making. No prediction is certain and in order to
make a rational decision, a decision maker needs to know the probability distributions
over the possible states of the world. Decision theory prescribes an optimal decision
to be one that maximizes the expected utility [2]. Utility is a measure of desirability
of outcomes that can be combined in the same way as probabilistic expectation. The
more precise the probability estimates, the better quality of the resulting decisions.

Accuracy of probability estimates is expressed by calibration curves, which are
also known in the area of weather forecasting as reliability diagrams [12,6]. While
the term reliability diagram testifies to the importance of accuracy in probability
estimates in practical systems, we find it somewhat too general and prefer the term
calibration curve instead.

The calibration curves express the relationship between the estimated probabil-
ities (horizontal axis) and the observed frequencies (vertical axis) in the data set. In
practice, calibration curves are constructed by dividing records with similar proba-
bility estimates Pr(E) produced by the system into bins. For each bin, the frequency
f (E) of the event E in the data (e.g., the prevalence of the class in question) is cal-
culated. Calibration curve is a plot of f (E) as a function of Pr(E). A model that is
perfectly calibrated will have a calibration curve that is a diagonal line from the point
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(0,0) to point (1,1). Every probability estimate of the model corresponds to identical
frequency in the data.

Figure 2 shows an example calibration curve for a system’s estimate of the tumor
state t4a from a TNM staging model. The curve departs from the diagonal line and
is also rugged, which is caused by the small size of the test data set (only 66 patient
records).

Fig. 2. The calibration curve for the probability of T 4a state produced by a TNM staging model.

The calibration curve is capable of expressing overconfidence (or underconfi-
dence) of a system, which provides important information for model builders.

3. Bootstrap Confidence Intervals for Evaluation Statistics

A simple statistical technique for deriving confidence intervals over an estimate can
be based on bootstrap resampling [7,3]. Given a representative sample, bootstrap re-
sampling allows to create a large collection of samples with similar statistical prop-
erties. Bootstrap resampling has been shown to provide very good results when the
original sample is representative for the population. If all records in the sample are in-
deed independent and identically distributed and originate from the same joint prob-
ability distribution, the sample has a very high chance of being representative, i.e.,
reflect the statistical properties of the distribution. In our work, we start with the sam-
ple used for model validation. We assume that it is representative and subsequently
use bootstrap resampling to derive the confidence intervals over any statistic based on
the original sample. While bootstrap resampling can be used to derive any statistic,
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we demonstrate the power of this technique on two statistics of interest in the context
of model validation: (1) confidence intervals over the ROC curves, and (2) confidence
intervals over the calibration curves.

In the remainder of this section, we describe how confidence intervals and con-
fidence areas for validation curves are obtained. Then, we sketch a technique for
capturing the change in the confidence intervals as a function of the size of the test
data set.

3.1 Bootstrap confidence intervals

Bootstrap confidence intervals are constructed from statistics calculated for artificial
samples drawn from the original sample with replacement. The general procedure is
as follows.

i. Having a data set D with n records, create m bootstrap samples by drawing n
elements with replacement from D.

ii. For each bootstrap sample D j, j = 1, . . . , m, calculate the desired statistic for
each sample.

iii. Sort the calculated statistics to get a(1) ≤ a(2) ≤ ·· · ≤ a(m).
iv. Take the (m(α/2))th element (a(m(α/2))) as the lower bound and the (m(1−α/

2))th element (a(m(1−α/2))) as the upper bound of the 100(1−α)% confidence
interval.

This method extends readily to confidence intervals over a curve by calculating the
confidence intervals over every point on the curve. For each x value we obtain m y-
values, which creates a sample to produce a confidence interval of y for each value of
x. The extended method can be described schematically as follows.

i. Create m bootstrap samples by drawing n elements with replacement from D.
ii. For each bootstrap sample, create a curve c j (i.e., ROC or calibration curve).

iii. Iterate through the representative set of values of x∗ ∈ [0,1] (e.g., 100 values
from range [0,1] with step of 0.01):
(a) Generate the set of y values that reflects all the points from generated curves

with x = x∗,
(b) Sort the y values
(c) Create a confidence interval [yL,yU ] over the y values by taking the (m(α/

2))th and the (m(1−α/2))th elements.
iv. This procedure results in construction of two curves: (1) one curve representing

the lower bound of the confidence interval, constructed by points of the yL value
for a given x, and (2) second curve as the upper bound is constructed by the yU

values.
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By connecting all lower bounds and all upper bounds of these intervals we obtain the
lower and upper bound of the confidence region. Figure 3 shows an example of the
confidence region over a ROC curve. In iii we use an iteration step of 0.01.

Fig. 3. Sample confidence region over a ROC curve

Confidence regions express the uncertainty about the statistic derived for the
model, conditional on the test set used. A plot of the confidence region is useful in
determining whether the given data set is sufficient for model assessment with a given
validation method.

3.2 Dynamics of the Area of a Confidence Region

A plot of the confidence region suggests a summary statistic, which is the total area
of the confidence region (ACR). For both ROC and calibration curves, ACR ranges
between 0 and 1. When no validation records are available, there is maximum un-
certainty about the ROC and calibration curves and ACR takes the value of 1. We
expect, that as the size of the validation set approaches infinity, the area of the confi-
dence region will approach a constant value.

A useful extension of ACR, showing the dynamics of the confidence regions,
is a plot of the ACR as a function of the size of the validation set. The larger the
validation data set, the smaller the area of the confidence region. We can simulate it
by creating subsets of the original dataset. Plotting the area of the confidence region
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as a function of the validation set size may be helpful in finding the optimal test set
size. We will show the ACR plots in our experiments in Section 4..

4. Evaluation

We evaluate our approach on ROC and calibration curves derived for three Bayesian
network models: (1) two models learned automatically from the Cover Type data set
[1] available from the Irvine Machine Learning Repository, and (2) a sizeable (over
300 variables) practical model for cancer therapy planning, constructed using experts’
knowledge for representing the tumor-, lymph nodes- and metastasis staging (TNM
staging for laryngeal cancer). The number of validation records (real patient cases)
available for the cancer therapy planning model is very small (only 66 prior patient
cases). We treat the analysis of this model as an inspiration for a practical application
of our work.

4.1 Cover Type Data Set and Models

Our first two models are derived by means of a Bayesian network learning algorithm
from the Cover Type data set [1], available from the UC Irvine Machine Learning
Repository4. The data set consists of 581,012 records over 55 variables. We dis-
cretized the continuous variables using uniform interval width discretization method
with three intervals. We extracted two disjoint data sets from the original data set for
the purpose of our analysis: (1) training data set, one consisting of 81,012 records,
and (2) validation data set of 15,000 records for our tests. For the purpose of our
experiments, we created a family of validation data sets from (2) by taking sub-
sets of the first 100 records (D1), the first 200 records (D2), etc., in such a way that
D1 ⊂ D2 ⊂ . . . ⊂ Dk ⊂ D. These subsets simulate the natural process of harvesting
more data records for the validation data set.

We created two models from the Cover Type data set (we will refer to them as
A and B). For the first model (A), we used all variables and the Bayesian search al-
gorithm [4] implementation in GeNIe software5. The model consisted of 55 variables
connected by a total of 175 arcs. We obtained the second model (B) by mutilating
model A. Our mutilation amounted to removing five strongest arcs in model A. Arc
strength is a standard function of GeNIe and its theoretical background is described
in [10].

4 https://archive.ics.uci.edu/ml/datasets/Covertype
5 Available free of charge for academic research and teaching use at http://www.bayesfusion.com/
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We also created a modification of the validation set that contained 50% missing
values (these were selected randomly, using uniform distribution).

We ran three experiments for the models A and B:

– model A with original validation data set,
– model B with original validation data set, and
– model A with validation data set with missing values.

In each experiment, we generated regions of confidence as described in Section 3.2
with the size of the validation data set ranging from 100 to 15,000. For each confi-
dence region, we reported the area of the region and the longest confidence interval
among x values.

4.2 The TNM-Staging Model

The third model used in our experiments is a detailed representation of the NM stag-
ing of laryngeal cancer, created manually by clinical experts from the Leipzig Uni-
versity Hospital (Universitätsklinikum Leipzig, UKL) [17]. The model consists of
303 vertices connected by 334 arcs. Model variables have between 2 and 27 states
with average of 4 states. The model is specified by a total of 78,606 parameters ob-
tained from experts. Even though the UKL hospital is highly specialized in head and
neck cancer, because challenging head and neck cancers are not common, it receives
only around 80 patients per year. The medical records covering more than ten years
worth of treatment at UKL are stored, although they are incomplete, unstructured,
and recorded mainly in free text format. So far, only 66 patient records have been
coded and are suitable for use by the system developers. Many values in these 66
records are missing. The number of observations (values of evidence variables) in
these cases vary between 35 and 157 (with the average of 78) per patient record. This
is an ongoing project and the data from previous years is successively being added
to the validation data set. New patient cases are encoded directly in the destination
format.

In our experiment, we derived the confidence regions of the ROC curve and the
calibration curve for one of the key decision variables (patient larynx T-state) in the
TNM staging model for laryngeal cancer.

4.3 Results

Figure 4 shows the areas of confidence region (ACR) as a function of the validation
data set size for each of the states of the Cover Type variable. To build this plot, we

36



Bootstrap confidence intervals over validation results

created a confidence interval plot for every subset Di of the validation data set (see
Section 4.1) and calculated the area of this plot. Analyzing the plots subjectively,
we can see that ACR decreases as the number of validation records becomes larger,
reaching a plateau for roughly 2,000 records. The plots show the dynamics of this
process and suggests that roughly 2,000 validation records is a reasonable number to
get an idea of the accuracy of the model’s reliability.

Fig. 4. Changes of areas of confidence regions (ACR) and maximum confidence interval of the ROC
and the calibration curve as a function of the number of data records (model A and the original data
set).

Figure 5 shows the results of testing the modified model (top) and testing with
validation records with missing values (bottom). The results are qualitatively similar
to those for model A and the original validation set. Here also 2,000 records seem
sufficient for the ACR to reach a plateau beyond which improvement is rather small.

For the TNM staging model, which is a real clinical model, we had only 66
validation records, so the dynamic of the ACR measure is hard to derive. We report
only the calibration curves with their 90% confidence intervals. Figure 6 (left) shows
the confidence interval of the calibration curve plot for stage T2 laryngeal cancer.
The curve seems to suggest that the model is underconfident – the probabilities of the
T2 stage of laryngeal cancer tend to be concentrated around moderate probabilities,
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Fig. 5. Changes of areas of confidence region (ACR) as a function of the number of validation data
records. Model B tested on the original data set (top). Model A and the data set with missing values
(bottom).

while the corresponding frequencies are more extreme. Figure 6 (right) shows an
identical plot for the TNM staging model for stage T1a of laryngeal cancer. The
model seems to be better calibrated but the confidence intervals are wide and more
data are needed to assess the model response more precisely.

5. Conclusion

This paper proposed a methodology for deriving confidence intervals over various
measures of accuracy of a Bayesian network model by means of bootstrap resam-
pling. While any validation statistic is amenable for confidence interval analysis, we
applied our method to deriving confidence intervals over ROC curves and calibra-
tion curves. We have proposed capturing the uncertainty over confidence intervals
by means of areas of confidence region (ACR) and have shown how these change
as a function of the number of records in the validation data sets. Such plots allow
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Fig. 6. The 90% confidence region over the calibration curve for the tumor state T2 (left) and state T1a
(right) in the TNM-staging model.

for finding a number of records that are necessary to gain reasonable confidence in
validity of the model.

The areas of confidence region (ACR) as a function of the number of records
curves seems to follow a systematic shape. It may be worth to investigate whether
this shape can be characterized theoretically. If so, the number of records needed for
a reasonable confidence in evaluation can be predicted a-priori, based on a limited
number of validation records.

Finally, our approach gives no insight into the reasons for possibly low confi-
dence in validation, such as flaws in the model structure or its numerical parameters.
To gain insight into the possible reasons for low accuracy, more detailed approaches
are needed, focusing on the feedback between model inputs and its outputs.
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JAK WIARYGODNA JEST MIARA OCENY MODELU?
BOOTSTRAPOWE PRZEDZIAŁY UFNOŚCI DLA MIAR

DOKŁADNOŚCI MODELU

Streszczenie Przy testowaniu modelu należy zdawć sobie z tego sprawę, że weryfikacja
modelu przy pomocy małego zbioru danych jest mniej przekonywująca niż weryfikacja ba-
zująca na dużym zbiorze danych. Często napotyka się sytuację, w której do analizy modelu
dysponujemy nieznaczną ilością rekordów. Nasuwa się pytanie o wiarygodność oceny mo-
delu.
Proponujemy w takiej sytuacji przyjrzeć się bootrstrapowym przedziałom ufności różnych
miar dokładności modelu. W tej pracy określamy bootstrapowe przedziały ufności dla krzy-
wych ROC i krzywych kalibracji modeli uzyskanych z danych z repozytorium UC Irvine.
Czynność powtarzamy dla modelu skonstruwanego na podstawie wiedzy ekspertów (po-
nad 300 zmiennych) i testowanego na 66 zebranych rekordach pacjentów. Pokazujemy jak
wzrost liczby rekordów wpływa na szerokość bootstrapowych przedziałów ufności oraz jak
taka analiza może pomóc w określeniu liczby rekordów, która może podwyższyć rzetelność
weryfikacji modelu.

Słowa kluczowe: sieci bayesowskie, bootstrapowe przedziały ufności, walidacja
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