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IMPLICIT FINITE DIFFERENCE METHOD

FOR THE SPACE FRACTIONAL HEAT

CONDUCTION EQUATION WITH THE

MIXED BOUNDARY CONDITION

Abstract. This paper presents the numerical solution of the space frac-
tional heat conduction equation with Neumann and Robin boundary con-
ditions. In described equation the Riemann-Liouville fractional derivative
is used. Considered model is solved by using the implicit finite difference
method. The paper also presents the numerical examples to illustrate the
accuracy and stability of described method.

1. Introduction

In recent years the fractional derivatives became very popular in modeling

various types of phenomena occurring in biology, physics, engineering, as well as

in the control theory [2,7,15,17,19]. Often, we are not able to solve these models

in an analytical way, therefore it is important to develop the approximate methods

dedicated for solving the fractional differential equations.

Murio in his paper [16] presents the solution of the time fractional diffu-

sion equation with zero boundary condition by using the implicit finite difference

method. He applies in his work the Caputo fractional derivative. In paper [1],
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the author considers the time fractional heat conduction equation with Neumann

and Robin boundary conditions and the Caputo fractional derivative. To solve

this equation, the implicit finite difference scheme is used. Next, in work [20] the

authors present the numerical scheme for fractional heat equation with Dirichlet

and Neumann boundary conditions.

In paper [3] the authors describe the numerical method for the fractional dif-

fusion equation with Dirichlet boundary conditions. In this approach the finite

difference method and the Kansa method are used to solve the considered equation.

While paper [8] presents the numerical solution of the differential equation with

fractional derivative with respect to the spatial variable. The fractional deriva-

tive applied to this model is the Riemann-Liouville fractional derivative and the

authors use the finite volume method.

In paper [21] authors consider the space fractional diffusion equation with

Dirichlet boundary conditions and the Caputo derivative. To solve this equation

the authors use the Chebyshev polynomials of the third kind. Paper [5] presents

the numerical solution of the fractional diffusion equation with Dirichlet boundary

conditions. The authors use in this elaboration the Crank-Nicolson scheme to solve

the equation and then they prove the stability and convergence of the proposed

method. Another publication in which we can find some information about the

fractional differential equations and their numerical solution is [6].

Also Meerschaert and Tadjeran deal with the numerical methods of solving

the differential equations with fractional derivative [10–12, 22]. Paper [22] shows

the numerical solution of the fractional diffusion equation with fractional deriva-

tive with respect to the spatial variable and with the first kind boundary condi-

tions, while in work [10] the authors investigate the numerical solution of the

two-dimensional fractional dispersion equation. In both papers the fractional

derivative is taken with respect to the spatial variable and it is expressed as the

Riemann-Liouville fractional derivative.

In this paper, the space fractional heat conduction equation is considered and

its numerical solution is found. The investigated equation is completed by the

Neumann and Robin boundary conditions and as the fractional derivative the

authors apply the Riemann-Liouville derivative. In order to solve the described

model, the implicit finite difference scheme is used and O(h2) approximations

for the boundary conditions is applied. The paper includes also the examples to

illustrate the accuracy and stability of described method.
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2. Formulation of the problem

Let us consider the following heat conduction equation with fractional deriva-

tive with respect to the spatial variable

c̺
∂u(x, t)

∂t
= −v(x)

∂u(x, t)

∂x
+ λ(x)

∂αu(x, t)

∂xα
+ g(x, t), (1)

defined in region D = {(x, t) : x ∈ [a, b], t ∈ [0, T ]}. In this work, we use the

terminology adopted for the case of classical heat conduction equation, despite of

the change of some units, so λ denotes here the thermal conductivity coefficient,

c and ̺ are the specific heat and the density, respectively. We assume that v(x) >

0, λ(x) > 0 for x ∈ [a, b]. For equation (1) there are posed the initial condition

u(x, 0) = f(x), x ∈ [a, b], (2)

and the boundary conditions of the second and third kind

−λ(a)
∂u(a, t)

∂x
= q(t), t ∈ [0, T ], (3)

−λ(b)
∂u(b, t)

∂x
= h(t)(u(b, t) − u∞), t ∈ [0, T ], (4)

where h is the heat transfer coefficient, q means the heat flux and u∞ denotes the

ambient temperature.

Fractional derivative occurring in the described model is expressed as the

Riemann-Liouville fractional derivative defined by [17]:

∂αu(x, t)

∂xα
=

1

Γ(n− α)

∂n

∂xn

∫ x

a

u(s, t)(x− s)n−1−αds, (5)

where α ∈ (n − 1, n] and Γ(·) is the Gamma function [18]. In case of α ∈ (1, 2),

equation (1) describes the super-diffusion phenomenon [9, 13], and for α = 2 we

obtain the model with classical derivative.

3. Numerical solution

In this section, we describe the numerical solution of model (1)-(4) determined

by using the finite difference method. Let N,M ∈ N are the sizes of grid for the
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spatial and time variable, respectively. We set the grid steps ∆x = (b−a)
N

and

∆t = T/M . Thus we get the following grid

S =
{

(xi, tk) : xi = a+ i∆x, tk = k ∆t, i = 0, 1, . . . , N, k = 0, 1, 2, . . . ,M
}

. (6)

We assume the following notation λi = λ(xi), vi = v(xi), gki = g(xi, tk), fi =

f(xi), hk = h(tk). The values of approximate function in points (xi, tk) are

denoted by Uk
i (Uk

i ≈ u(xi, tk)).

In order to approximate the fractional derivative (5), we use the Grünwald

formula [14]:

∂αu(x, t)

∂xα
=

1

Γ(−α)
lim

N→∞

1

rα

N
∑

j=0

Γ(j − α)

Γ(j + 1)
u(x− (j − 1)r, t), (7)

where r = x−a

N
. We also assume the notation

ωα,j =
Γ(j − α)

Γ(−α)Γ(j + 1)
. (8)

The discrete form of equation (1) is presented as follows (i = 1, 2, . . . , N − 1):

Uk+1
i − Uk

i

∆t
= −vi

Uk+1
i − Uk+1

i−1

c̺∆x
+

λi

c̺(∆x)α

i+1
∑

j=0

ωα,jU
k+1
i−j+1 +

gk+1
i

c̺
. (9)

Rearranging equation (9), we obtain (i = 1, 2, . . . , N − 1):

− ωα,0
λi∆t

c̺(∆x)α
Uk+1
i+1 +

(

1 +
vi∆t

c̺∆x
− ωα,1

λi∆t

c̺(∆x)α

)

Uk+1
i −

−
( vi∆t

c̺∆x
+ ωα,2

λi∆t

c̺(∆x)α

)

Uk+1
i−1 −

λi∆t

c̺(∆x)α

i+1
∑

j=3

ωα,kU
k+1
i−j+1 =

= Uk
i +

∆tgk+1
i

c̺
. (10)

The Neumann boundary condition is approximated as follows

−λ0

(−Uk+1
2 + 4Uk+1

1 − 3Uk+1
0

2∆x

)

= qk+1, (11)
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and the Robin boundary condition is approximated in the form

−λN

(Uk+1
N−2 − 4Uk+1

N−1 + 3Uk+1
N

2∆x

)

= hk+1(Uk+1
N − u∞). (12)

By using the approximations of boundary conditions, equation (10) may be

rewritten in the matrix form

AU
k+1

= U
k

+ G
k+1

∆t, k = 0, 1, 2, . . . , (13)

where

U
k

= [Uk
0 , U

k
1 , . . . , U

k
N ]T ,

G
k+1

∆t =
[

qk+1,
gk+1
1 ∆t

c̺
,
gk+1
2 ∆t

c̺
, . . . ,

gk+1
N−1∆t

c̺
,−hk+1u∞

]

,

matrix A is of size (N + 1) × (N + 1) and we have the following coefficients:

aij =























































































































3λ0

2∆x
, j = i = 0,

−2λ0

∆x
, j = 1 ∧ i = 0,

λ0

2∆x
, j = 2 ∧ i = 0,

− vi∆t
c̺∆x

− ωα,2
λi∆t

c̺(∆x)α , j = i− 1 ∧ i 6= 0 ∧ i 6= N,

1 + vi∆t
c̺∆x

− ωα,1
λi∆t

c̺(∆x)α , j = i ∧ i 6= N ∧ i 6= 0,

−ωα,0
λi∆t

c̺(∆x)α , j = i + 1 ∧ i 6= 0 ∧ i 6= N,

−ωα,i−j+1
λi∆t

c̺(∆x)α , j 6 i− 2,

0 j > i + 2,

− λN

2∆x
j = N − 2 ∧ i = N,

2λN

∆x
j = N − 1 ∧ i = N,

− 3λN

2∆x
− hk+1 j = i = N.

On the way of solving the system of equations defined by (13), we obtain the

approximate values of function u in the grid points (6).

In paper [22], we can find the proof of unconditional stability of the presented

method in case of the homogeneous Dirichlet and Neumann boundary conditions

defined, respectively, on the left and the right end of the considered interval. By

conducting the similar reasoning, it can be proven that the method discussed in

this paper is unconditionally stable for the considered boundary conditions.



130 R. Brociek, D. S lota

4. Numerical examples

In this section we show some examples to illustrate the accuracy of presented

method.

Example 1. Let us consider equation (1) defined in region

D = {(x, t) : x ∈ [0, 1], t ∈ [0, 1]},

with the following data

α = 1.8, λ(x) =
1

6
Γ(2.2)x2.8, c = ̺ = 1, u∞ = 50,

g(x, t) = −(1 + x)x3e−t, h(t) = −
0.550901e−t

e−t − 50
, v(x) = 0, q(t) = 0.

The initial condition has the form

u(x, 0) = x3, x ∈ (0, 1).

The exact solution of considered problem is of the following form

u(x, t) = x3e−t.

Let us define now the maximal and average errors of the approximate solution

∆max = max
06i6N
16k6M

|uk
i − Uk

i |,

∆avg =
1

(N + 1)(M + 1)

N
∑

i=0

M
∑

k=0

|uk
i − Uk

i |.

Table 1 includes the errors of approximate solution for the different grids.

As we can see, with the increase of second dimension M of the grid, for the

first dimension N fixed, the errors decrease. For example, where N = 100 and

M = 100, 200, 300, the absolute errors do not exceed 1.95 · 10−3, 1.16 · 10−3 and

8.92 · 10−4, respectively. Increasing the dimension of grid with respect to the

spatial variable, for the dimension M fixed, we observe a slight decrease of the

approximate solution errors.
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Table 1
Maximal errors ∆max and average errors ∆avg

calculated for the respective grids (example 1)

Grid N ×M ∆max ∆avg

10 × 10 1.7162 · 10−2 4.6937 · 10−3

10 × 30 7.2131 · 10−3 2.0595 · 10−3

20 × 20 9.1951 · 10−3 2.4490 · 10−3

50 × 50 3.8367 · 10−3 1.0033 · 10−3

100 × 100 1.9459 · 10−3 5.0549 · 10−4

100 × 200 1.1558 · 10−3 3.0121 · 10−4

100 × 300 8.9191 · 10−4 2.3289 · 10−4

200 × 100 1.7713 · 10−3 4.5775 · 10−4

300 × 100 1.7110 · 10−3 4.4155 · 10−4

In Figure 1, we can see the distribution of errors in the grid points. The largest

errors occur at the final moment of time t = 1 and for x = 1. Figure 2 presents

the exact solution, the approximate solution and the errors in time t = 1. The

approximate solution fits very well to the exact solution, the largest error occurs

in point x = 1 and does not exceed 0.002.

Fig. 1. Distribution of errors of approximate solution (N = M = 100) (example 1)
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Fig. 2. Distribution of errors (a) together with the approximate solution (dots) and the
exact solution (solid line) (b) in time t = 1 (N = M = 100) (example 1)

Example 2. Again, we consider equation (1) but this time with the following

data

α = 1.9, λ(x) =
1

2
, c = ̺ = 1, u∞ = 100, a = 1, b = 2,

g(x, t) = −2t(x− 1) + 0.0525569(t2 − 1)
(32.7273− 32.7273x

(x− 1)1.9
+

18.1818

(x− 1)0.9
+

+
15.5455− 31.0909x+ 15.5455x2

(x− 1)2.9

)

,

h(t) =
(1 − t2)

2(99 + t2)
, v(x) = 0, q(t) =

1

2
(t2 − 1).

The problem is completed by the initial condition

u(x, 0) = x− 1, t ∈ [0, 1].

The exact solution for this example is given by the following function

u(x, t) = (x− 1)(1 − t2).

Table 2 presents the errors of approximate solution for the different grids.

Similar as in example 1, by decreasing step ∆t of the grid we cause the significant

decrease of errors ∆avg and ∆max of the approximate solution. Moreover, increase

of the grid density with respect to the spatial variable results in a slight decrease

of errors.
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Table 2
Maximal errors ∆max and average errors ∆avg

calculated for the respective grids (example 2)

Grid N ×M ∆max ∆avg

10 × 10 5.8912 · 10−2 2.4749 · 10−2

10 × 50 1.3121 · 10−2 6.0376 · 10−3

20 × 20 2.9118 · 10−2 1.2127 · 10−2

50 × 50 1.1462 · 10−2 4.7135 · 10−3

100 × 100 5.6665 · 10−3 2.3089 · 10−3

100 × 200 2.9806 · 10−3 1.2908 · 10−3

100 × 300 2.0838 · 10−3 9.5044 · 10−4

200 × 100 5.4641 · 10−3 2.1286 · 10−3

300 × 100 5.3918 · 10−3 2.0635 · 10−3

Distribution of errors in domain D for Example 2 is presented in Figure 3.

The largest error, about 0.005, is observed in time t = 1 and for x = 1. On the

left boundary of variable x the errors are smaller than on the right boundary. We

also present the errors of approximate solution in time t = 1 (see Figure 4). The

absolute error is smaller than 0.006 and the largest error is observed for x = 2.

Fig. 3. Distribution of errors of approximate solution (N = M = 100) (example 2)
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Fig. 4. Distribution of errors (a) together with the approximate solution (dots) and the
exact solution (solid line) (b) in time t = 1 (N = M = 100) (example 2)

Example 3. In this example, we assume the following data

α = 1.7, λ(x) =
x

100
, c = 1000, ̺ = 2100, u∞ = 100, a = 0, b = 1,

g(x, t) = −0.00334273 t2x0.3 + 4200000 t x,

h(t) = −
0.01 t2

t2 − 100
, v(x) = 0, q(t) = 0,

and the exact solution is of the form u(x, t) = x t2.

Similarly like in the previous examples, we examine the size of the error in

dependance on the grid density. Table 3 presents the errors for different grids. For

150× 150 grid the maximal error is about 6.7 · 10−3, while for 200× 200 grid this

error is equal to 5 · 10−3.

Table 3
Maximal errors ∆max and average errors ∆avg

calculated for the respective grids (example 3)

Grid N ×M ∆max ∆avg

10 × 10 1.0000 · 10−1 2.5000 · 10−2

50 × 50 2.0000 · 10−2 5.0000 · 10−3

70 × 70 1.4286 · 10−2 3.5714 · 10−3

100 × 100 1.0000 · 10−2 2.5000 · 10−3

150 × 150 6.6667 · 10−3 1.6667 · 10−3

200 × 200 5.0000 · 10−3 1.2500 · 10−3
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5. Conclusions

In this paper the method of solving the one-dimensional heat conduction equa-

tion with the space fractional derivative and the mixed boundary conditions of the

second and third kind is presented. For this purpose, the implicit finite difference

method was used and O(h2) approximations for boundary conditions was applied.

The described method approximates very well the exact solution, as we can see

by analyzing the examples. With the increase of density grid, the errors of ap-

proximate solution decrease. The motivation for creating the algorithm for solving

the investigated model with the boundary conditions of the second and third kind

came from the expected possibility for using this approach also in solving the frac-

tional inverse problem. Moreover, the authors intend in the future to consider the

models with boundary conditions of fractional order.
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