PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ciprofloxacin Removing from Aqueous Solutions Using Batch Reactor Electrocoagulation Process with Aluminum Electrodes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing the reliance on pharmaceuticals such as analgesics, antibiotics, antidepressants, and other medications harms the environment and human health. The electrocoagulation process is a modern and crucial technology for treating various pollutants. This paper uses electrocoagulation technology (EC) to remove the most widely used antibiotic, ciprofloxacin (CIP) from an aqueous solution. The proposed approach was experimentally implemented in a batch reactor equipped with (aluminium sheets) that act as electrodes (cathode and anode) arranged vertically in a monopolar parallel mode (MP-P). Different operating parameters were considered, in this work, including inter-electrode distance (IED), pH of the solution, current density (CD), electrolysis time (ET), initial concentration of CIP (Co), and concentration of supporting electrolyte NaCl. Several experiments were performed, and the results revealed that EC has successfully applied with a high removal efficiency of 98.48% under optimum operating conditions: a gap between electrodes = 1 cm, current density = 1.5 mA/cm2, electrolysis time = 60 min, pH = 5, initial CIP concentration = 50 mg/l, and NaCl = 500 mg/l. The experimental results confirmed that the EC process provides a strategy for removing CIP from wastewater with a high removal efficacy and low energy consumption, additionally offering an increased opportunity for using Al-EC cells to treat antibiotic contaminants.
Rocznik
Strony
364--372
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Engineering, Collage of Engineering, University of Babylon, Iraq
  • Department of Environmental Engineering, Collage of Engineering, University of Babylon, Iraq
Bibliografia
  • 1. Ahmadzadeh, S., Asadipour, A., Pournamdari, M., Behnam, B., Rahimi, H.R., & Dolatabadi, M. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538-547.
  • 2. Alam, R., Sheob, M., Saeed, B., Khan, S. U., Shirinkar, M., Frontistis, Z., et al.. (2021). Use of electrocoagulation for treatment of pharmaceutical compounds in water/wastewater: A review exploring opportunities and challenges. Water, 13(15), 2105.
  • 3. Almukdad, A., Hawari, A. H., & Hafiz, M. (2021). An Enhanced Electrocoagulation Process for the Removal of Fe and Mn from Municipal Wastewater Using Dielectrophoresis (DEP). Water, 13(4), 485.
  • 4. Amosa, M. K., Jami, M. S., Alkhatib, M. a. F. R., & Majozi, T. (2016). Studies on pore blocking mechanism and technical feasibility of a hybrid PAC-MF process for reclamation of irrigation water from biotreated POME. Separation Science and Technology, 51(12), 2047-2061.
  • 5. Aoudj, S., Khelifa, A., Drouiche, N., Hecini, M., & Hamitouche, H. (2010). Electrocoagulation process applied to wastewater containing dyes from textile industry. Chemical Engineering and Processing: Process Intensification, 49(11), 1176-1182.
  • 6. Barışçı, S., & Turkay, O. (2016). Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation. Water Science and Technology, 73(7), 1673-1679.
  • 7. Barrera-Díaz, C., Frontana-Uribe, B., & Bilyeu, B. (2014). Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere, 105, 160-164.
  • 8. Bhuptawat, H., Folkard, G., & Chaudhari, S. (2007). Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. Journal of Hazardous Materials, 142(1-2), 477-482.
  • 9. Bilińska, L., Blus, K., Foszpańczyk, M., Gmurek, M., & Ledakowicz, S. (2020). Catalytic ozonation of textile wastewater as a polishing step after industrial scale electrocoagulation. Journal of environmental management, 265, 110502.
  • 10. Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chemical engineering journal, 320, 608-633.
  • 11. Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., & Vemuri, J. (2023). A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle.
  • 12. Daneshvar, N., Khataee, A., & Djafarzadeh, N. (2006). The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing CI Basic Yellow 28 by electrocoagulation process. Journal of Hazardous Materials, 137(3), 1788-1795.
  • 13. Daneshvar, N., Khataee, A., Ghadim, A. A., & Rasoulifard, M. (2007). Decolorization of CI Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, 148(3), 566-572.
  • 14. Dickhout, J. M., Moreno, J., Biesheuvel, P., Boels, L., Lammertink, R., & De Vos, W. (2017). Produced water treatment by membranes: A review from a colloidal perspective. Journal of colloid and interface science, 487, 523-534.
  • 15. El-Ashtoukhy, E., Mobarak, A., & Fouad, Y. (2016). Decolourization of reactive blue 19 dye effluents by electrocoagulation in a batch recycle new electrochemical reactor. International journal of electrochemical science, 11(3), 1883-1897.
  • 16. Eyvaz, M., Gürbulak, E., Kara, S., & Yüksel, E. (2014). Preventing of cathode passivation/deposition in electrochemical treatment methods–a case study on winery wastewater with electrocoagulation (Vol. 1): IntechOpen London, UK.
  • 17. Fu, S., Jia, H., Meng, X., Guo, Z., & Wang, J. (2021). Fe-C micro-electrolysis-electrocoagulation based on BFDA in the pre-treatment of landfill leachate: enhanced mechanism and electrode decay monitoring. Science of the Total Environment, 781, 146797.
  • 18. Ghosh, D., Medhi, C., & Purkait, M. (2011). Techno-economic analysis for the electrocoagulation of fluoride-contaminated drinking water. Toxicological & Environmental Chemistry, 93(3), 424-437.
  • 19. Gu, X., Li, J., Feng, X., Qu, W., Wang, W., & Wang, J. (2023). Efficient removal of norfloxacin from water using batch airlift-electrocoagulation reactor: optimization and mechanisms analysis. RSC advances, 13(13), 8944-8954.
  • 20. Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21.
  • 21. Hashim, K. S., Hussein, A. H., Zubaidi, S. L., Kot, P., Kraidi, L., Alkhaddar, R., et al. (2019). Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. Paper presented at the Journal of Physics: Conference Series.
  • 22. Hashim, K.S., Shaw, A., Al Khaddar, R., Pedrola, M.O., & Phipps, D. (2017). Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. Journal of Environmental Management, 189, 98-108.
  • 23. Holt, P.K., Barton, G.W., Wark, M., & Mitchell, C.A. (2002). A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(2-3), 233-248.
  • 24. Huang, D., Hu, C., Zeng, G., Cheng, M., Xu, P., Gong, X., et al. (2017). Combination of Fenton processes and biotreatment for wastewater treatmentand soil remediation. Science of the Total Environment, 574, 1599-1610.
  • 25. Khan, N.A., Khan, S.U., Ahmed, S., Farooqi, I. H., Yousefi, M., Mohammadi, A.A., & Changani, F. (2020). Recent trends in disposal and treatment technologies of emerging-pollutants-A critical review. TrAC Trends in Analytical Chemistry, 122, 115744.
  • 26. Khandegar, V., & Saroha, A.K. (2013). Electrocoagulation for the treatment of textile industry effluent–a review. Journal of environmental management, 128, 949-963.
  • 27. Kraemer, S.A., Ramachandran, A., & Perron, G.G. (2019). Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms, 7(6), 180.
  • 28. Liew, W.L., Kassim, M.A., Muda, K., Loh, S.K., & Affam, A. C. (2015). Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review. Journal of environmental management, 149, 222-235.
  • 29. Mohammed, S. J., M-Ridha, M. J., Abed, K. M., & Elgharbawy, A. A. (2021). Removal of levofloxacin and ciprofloxacin from aqueous solutions and an economic evaluation using the electrocoagulation process. International Journal of Environmental Analytical Chemistry, 1-19.
  • 30. Mousazadeh, M., Alizadeh, S., Frontistis, Z., Kabdaşlı, I., Karamati Niaragh, E., Al Qodah, Z., et al. (2021). Electrocoagulation as a promising defluoridation technology from water: a review of state of the art of removal mechanisms and performance trends. Water, 13(5), 656.
  • 31. Nawarkar, C., & Salkar, V. (2019). Solar powered electrocoagulation system for municipal wastewater treatment. Fuel, 237, 222-226.
  • 32. Oulebsir, A., Chaabane, T., Tounsi, H., Omine, K., Sivasankar, V., Flilissa, A., & Darchen, A. (2020). Treatment of artificial pharmaceutical wastewater containing amoxicillin by a sequential electrocoagulation with calcium salt followed by nanofiltration. Journal of Environmental Chemical Engineering, 8(6), 104597.
  • 33. Parsa, J.B., Panah, T.M., & Chianeh, F.N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean Journal of Chemical Engineering, 33(3), 893-901.
  • 34. Sahu, O., Mazumdar, B., & Chaudhari, P. (2014). Treatment of wastewater by electrocoagulation: a review. Environmental Science and Pollution Research, 21, 2397-2413.
  • 35. Serna-Galvis, E.A., Berrio-Perlaza, K.E., & Torres-Palma, R.A. (2017). Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways. Environmental Science and Pollution Research, 24, 23771-23782.
  • 36. Shafaei, A., Rezayee, M., Arami, M., & Nikazar, M. (2010). Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination, 260(1-3), 23-28.
  • 37. Sher, F., Malik, A., & Liu, H. (2013). Industrial polymer effluent treatment by chemical coagulation and flocculation. Journal of Environmental Chemical Engineering, 1(4), 684-689.
  • 38. Silva, J. R., Carvalho, F., Vicente, C., Santos, A. D., Quinta-Ferreira, R. M., & Castro, L. M. (2022). Electrocoagulation treatment of cork boiling wastewater. Journal of Environmental Chemical Engineering, 10(3), 107750.
  • 39. Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37, 101440.
  • 40. Teng, J., Shen, L., He, Y., Liao, B.-Q., Wu, G., & Lin, H. (2018). Novel insights into membrane fouling in a membrane bioreactor: elucidating interfacial interactions with real membrane surface. Chemosphere, 210, 769-778.
  • 41. Varank, G., Erkan, H., Yazycy, S., Demir, A., & Engin, G. (2014). Electrocoagulation of tannery wastewater using monopolar electrodes: process optimization by response surface methodology.
  • 42. Xu, B., Iskander, S.M., & He, Z. (2020). Dominant formation of unregulated disinfection by-products during electrocoagulation treatment of landfill leachate. Environmental Research, 182, 109006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5487660b-442e-45f1-9647-e5597df2a972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.