Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For the modeling and evaluation of dual field-of-view (FOV) common-aperture dual-band imaging system performance, two factors must be considered at the same time. One is that the system must have a larger target acquisition range, and the other is that the detection range and recognition range of the system must be the same. In this paper, taking the dual FOV common-aperture visible/long-wave infrared (LWIR) imaging system as an example, the performance of the dual FOV common-aperture dual-band imaging system is modeled and evaluated using an imaging system performance model based on comprehensive resolution. Firstly, the target acquisition range of the dual FOV visible imaging system is analyzed, and the condition that the detection range is equal to the recognition range is obtained. Then, under the condition of common aperture, the target acquisition range and the relationship between detection range and recognition range of dual FOV LWIR imaging system are analyzed. The analysis results show that, under the condition of dual FOV and common aperture, when the detection and recognition ranges of the visible imaging system are equal, the detection and recognition ranges of the LWIR imaging system are not equal. When the detection and recognition ranges are close by reducing the comprehensive resolution, the target acquisition range of the dual FOV common-aperture dual-band imaging system will decrease.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
535--550
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- College of Optoelectronic Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
autor
- College of Optoelectronic Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
Bibliografia
- [1] MENGSHI LI, YANWEI CHEN, Dual-band fire image fusion algorithm based on NSST and feature weighting, Proc. SPIE 11911, 2nd International Conference on Computer Vision, Image, and Deep Learning, article no. 119111Q (5 October 2021), DOI: 10.1117/12.2604701.
- [2] LABORDE V., LOICQ J., HABRAKEN S., KERSHEN G., Making compact and innovative dual-band thermal imagers using hybrid optical elements, Proc. SPIE 11852, International Conference on Space Optics — ICSO 2020, article no. 118522E (11 June 2021), DOI: 10.1117/12.2599377.
- [3] QING LIN, WEIQI JIN, HONG GUO, YINGZHAO ZHANG, MAOZHONG LI, Confocal-window telescope objective design in visible and long-wave infrared, Guangxue Xuebao/Acta Optica Sinica 32(9), 2012, article no. 0922005, DOI: 10.3788/AOS201232.0922005.
- [4] YI-DONG WANG, WEN-QIANG LI, QING-BIN MENG, Design of a visible light/LWIR dual-band mutual path optical system, Electronics Optics & Control 25(12), 2018, pp. 94–97.
- [5] TING SUN, HAIYAN ZHU, ZIJIAN YANG, XUANZHI ZHANG, HUAMEI YANG, Design of dual-band common aperture camera optical system, Journal of Applied Optics 38(3), 2017, pp. 348–351, DOI: 10.5768/JAO201738.0301002.
- [6] ZHANPENG MA, YAOKE XUE, YANG SHEN, CHUNHUI ZHAO, CANGLONG ZHOU, SHANGMIN LIN, HU WANG, Design and realization of visible/LWIR dual-color common aperture optical system, Guangzi Xuebao/Acta Photonica Sinica 50(5), 2021, article no. 0511002, DOI: 10.3788/gzxb20215005.0511002.
- [7] HAIBIN ZHU, YU SHAO, YUANJIAN ZHANG, LIANG ZHOU, ZHIGANG XU, DALUE ZHU, JUNJING SHAN, Optical system design of visible/infrared and double-FOV panoramic aerial camera, Journal of Applied Optics 38(1), 2017, pp. 7–11, DOI: 10.5768/JAO201738.0101002.
- [8] VOLLMERHAUSEN R.H., JACOBS E.L., DRIGGERS R.G., New metric for predicting target acquisition performance, Optical Engineering 43(11), 2004, pp. 2806–2813, DOI: 10.1117/1.1799111.
- [9] SHORT R., DRIGGERS R., LITTLEJOHN D., SCHOLTEN M., Performance benefits of small-pitch, high-dynamic-range, digitally restored infrared imaging systems using triangle orientation discrimination and NVIPM, Applied Optics 58(23), 2019, pp. 6315–6320, DOI: 10.1364/AO.58.006315.
- [10] HIXSON J.G., TEANEY B.P., GRAYBEAL J.J., NEHMETALLAH G., Analysis and modeling of observer performance while using an infrared imaging system, Optical Engineering 59(3), 2020, article no. 033106, DOI: 10.1117/1.OE.59.3.033106.
- [11] FIETE R.D., Modeling the Imaging Chain of Digital Cameras, SPIE Press, 2010, DOI: 10.1117/3.868276.
- [12] FIETE R.D., Image quality and λFN/p for remote sensing systems, Optical Engineering 38(7), 1999, pp. 1229–1240, DOI: 10.1117/1.602169.
- [13] HOLST G., Imaging system performance based upon Fλ/d, Optical Engineering 46, 2007, article no. 103204, DOI: 10.1117/1.2790066.
- [14] DRIGGERS R., GORANSON G., BUTRIMAS S., HOLST G., FURXHI O., Simple target acquisition model based on Fλ/d, Optical Engineering 60(2), 2021, article no. 023104, DOI: 10.1117/1.OE.60.2.023104.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54854371-88ff-4735-a3ec-bba752072d5c