PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of Total Chromium Levels from Raw Tannery Wastewater via Electrocoagulation using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focused on reducing total chromium levels in raw wastewater from the leather tanning industry via electrocoagulation to comply with maximum permissible limits (MPL) and to determine the effects of main process parameters. An electrocoagulation reactor was built using aluminum electrodes as an anode and cathode. Then, the response surface methodology was applied using a 3k factorial design considering three factors, namely current intensity, treatment time, and pH. The total chromium removal percentage was considered as a response variable. 99% of the total chromium found in wastewater could be removed after 14-min treatment at 2-A current intensity and pH 5.5. Similar amount of chromium was removed at pH of 8.5 and 7. Statistical analysis performed at a confidence level of p < 0.05 revealed that all three factors influenced electrocoagulation. Total chromium could be efficiently removed from raw wastewater at a current intensity of 2.9 A, a pH of 8.4, and a treatment time of 21 min, suggesting that electrocoagulation using aluminum electrodes is an efficient method for total chromium removal. Thus, this process must be considered as a solution to the problems caused by the leather tanning industry and for better compliance with the MPL established in the Peruvian environmental standards.
Rocznik
Strony
217--224
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Universidad de Lima, Instituto de Investigación Científica (IDIC), Av. Javier Prado 4600, Surco, Lima, Perú
  • Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas (CITEccal Lima) - ITP, Av. Caquetá 1300, Rímac, Lima, Perú
  • Universidad de Lima, Instituto de Investigación Científica (IDIC), Av. Javier Prado 4600, Surco, Lima, Perú
Bibliografia
  • 1. Abdalhadi D. and Ugur K. 2015. Treatment of raw tannery wastewater by electrocoagulation technique: optimization of effective parameters using Taguchi method. Desalination and Water Treatment, 57, 14798–14809. DOI:10.1080/19443994.2015.1 074622.
  • 2. Bacardit A., Morera J., Ollé L., Bartolí E. & Borràs M. 2008. High chrome exhaustion in a nonfloat tanning process using a sulphonic aromatic acid. Chemosphere, 73, 820–824. DOI: 10.1016/j.chemosphere.2008.07.036.
  • 3. Bensadok K., Benammar S., Lapicque F. & Nezzal G. 2007. Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. Journal of Hazardous Materials, 152, 423–430. DOI:10.1016/j.jhazmat.2007.06.121.
  • 4. Cañizares P., Jiménez C., Martínez F., Rodrigo M.A. & Sáez C. 2009. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters, Journal of Hazardous Materials, 163, 158–164.
  • 5. Elabbas N., Ouazzani L., Mandi F., Berrekhis M., Perdicakis S., Pontvianne M. N., Pons F. & Lapicque J. P. 2016. Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode. Journal of Hazardous Materials, 319, 69–77. DOI: 10.1016/j.jhazmat.2015.12.067.
  • 6. El-Naas H. & Hamdan S. 2014. Removal of hexavalent chromium from groundwater by continuous electrocoagulation. International Conference on Chemical Engineering and Applications, 20, 2775–2781. DOI: 10.7763/IPCBEE. 2014. V74. 16.
  • 7. Espinoza-Quiñones F. R., Fornari M. M. T., Módenes A. N., Palácio S. M., Da Silva F. G., Szymanski N. & Trigueros D. E. G. 2009. Pollutant removal from tannery effluent by electrocoagulation. Chemical Engineering Journal, 151, 59–65. DOI: 10.1016/j.cej.2009.01.043.
  • 8. Gil Pavas E., Dobrosz-Gómez I. & Gómez-García M. Á. 2011. The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters. Water Science and Technology, 63, 385–394. DOI: 10.2166/wst.2011.232.
  • 9. Gutiérrez J.F., Espino A.E., Coreño A., Acevedo F.J., Reyna G., Fernández F.J., et al. 2010. Mecanismos de interacción con cromo y aplicaciones biotecnológicas en hongos. Revista Latinoamericana de Biotecnologia Ambiental y Algal, 1, 47–63.
  • 10. Hamdan S.S. & El-Naas M.H. 2014. Characterization of the removal of Chromium (VI) from groundwater by electrocoagulation. Journal of Industrial and Engineering Chemistry, 20, 2775–2781. DOI: 10.1016/j.jiec.2013.11.006.
  • 11. Harminder P.S. et al. 2013. Chromium toxicity and tolerance in plants. Environmental. Chemistry Letters, 11, 229–254. DOI: 10.1007/ s10311–013–0407–5.
  • 12. Kanagaraj J., Senthivelan T., Panda R.C., Kavitha S. 2014. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production.
  • 13. Kobya M., Hiz H., Senturk E., Aydiner C. & Demirbas E. 2006. Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination, 190, 201–211. DOI: 10.1016/j.desal.2005.10.006.
  • 14. Mahmad M., Rozainy M., Abustan I. & Baharun N. 2016. Electrocoagulation process by using aluminium and stainless-steel electrodes to treat total chromium, colour and turbidity. Procedia Chemistry, 19, 681–686. DOI: 10.1016/j.proche.2016.03.070.
  • 15. Manjushree C., Mostafa M.G., Biswas T.K. & Saha A. K. 2013. Treatment of leather industrial effluents by filtration and coagulation processes, Water Resources and Industry.
  • 16. Mella B., Glanert A. & Gutterres M. 2015. Removal of chromium from tanning wastewater and its reuse. Process Safety and Environmental Protection, 95, 195–201. DOI: 10.1016/j.psep.2015.03.007.
  • 17. Mella B., Glanert A.C.C. & Gutterres M. 2013. Removal of chromium from tanning wastewater by chemical precipitation and electrocoagulation. In: XXXII Congress of the IULTCS, Istanbul.
  • 18. Mollah M., Morkovsky P., Gomes J., Kesmez M., Parga J. & Cocke D. 2004. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114, 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.
  • 19. Piña M., Martín A., González C., Prieto F., Guevara A. & García J. 2011. Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista Mexicana de Ingeniería Química, 10, 257–271. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665–273820110002 00010.
  • 20. Porras Á.C. 2010. Descripción de la nocividad del cromo proveniente de la industria curtiembre y de las posibles formas de removerlo. Revista Ingenierías Universidad De Medellin, 9, 41–49.
  • 21. Saxena G., Chandra R. & Bharagava RN. 2016. Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Reviews of Environmental Contamination and Toxicology, 240, 31–69. DOI: 10.1007/398_2015_5009.
  • 22. Ziati M. 2018. Reduction of turbidity and chromium content of tannery wastewater by electrocoagulation process. Water Environment Research. DOI: 10.21 75/106143017x15131012152906.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5481e7e6-d8a4-4d24-b8ec-48050b212e16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.