PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insights into the processing, structure, and mechanical performance of polyethylene/gypsum composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polymer composites are used in all branches of industry, with numerous applications. Despite the many years of modifying commodity polymers, using novel fillers allows the range of their applicability to be extended. The impact of new types of fillers on the polymer matrix is not always predictable and requires further studies. The presented study analyzed the application of gypsum as a filler for composites based on high-density polyethylene (PE). The filler was introduced in the amounts of 1-20 wt.%, and its impact on the processing, static, and dynamic mechanical performance of the composites was investigated. At lower filler loadings, the composites could be processed without any hindrance of flowability compared to the neat PE. Up to 5 wt.%, the tensile strength was maintained at a similar level to PE due to the satisfactory quality of the interface and good interfacial adhesion. Higher loadings caused a drop in the tensile strength with a simultaneous rise in Young’s modulus. A further increase in the filler loading resulted in higher values of porosity and growth of the adhesion factor, determinedfrom the dynamic mechanical results, which led to deterioration of the mechanical performance.
Rocznik
Strony
7--24
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Materials Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Gdansk University of Technology, Department of Polymer Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Poznan University of Technology, Institute of Materials Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Gdansk University of Technology, Department of Polymer Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Poznan University of Technology, Institute of Materials Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Czarnecka-Komorowska D., Wiszumirska K., Sustainability design of plastic packaging for the circular economy, Polimery 2020, 65, 8-17, DOI: 10.14314/polimery.2020.1.2.
  • 2. Hejna A., Renewable, degradable, and recyclable polimer composites, Polymers 2023, 15, 1769, DOI: 10.3390/polym15071769.
  • 3. Kasirajan S., Ngouajio M., Polyethylene and biodegradable mulches for agricultural applications: a review, Agron. Sust. Dev. 2012, 32, 501-529, DOI: 10.1007/s13593-011-0068-3.
  • 4. Fortune Business Insights. Plastics Polymers & Resins / Polyethylene (PE) Market, https://www.fortunebusinessinsights. com/industry-reports/polyethylene-pe-market-101584 2023.
  • 5. Peterlin A., Molecular model of drawing polyethylene and polypropylene, J. Mater. Sci. 1971, 6, 490-508, DOI: 10.1007/BF00550305.
  • 6. Olesik P., Kozioł M., Jała J., Processing and structure of HDPE/glassy carbon composite suitable for 3D printing, Compos. Theory Pract. 2020, 20, 72-77.
  • 7. Gnatowski A., Kazik E., Palutkiewicz P., Investigation of properties of molded parts made of polyethylene with addition of ash from bituminous coal, Compos. Theory Pract. 2018, 18, 127-132.
  • 8. Rudawska A., Jakubowska P., Klozinski A., Surface free energy of composite materials with high calcium carbonate filler content, Polimery 2017, 62, 434-440, DOI: 10.14314/polimery.2017.434.
  • 9. Członka S., Strąkowska A., Kairytė A., Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams, Polym. Test. 2020, 87, 106534, DOI: 10.1016/j.polymertesting.2020. 106534.
  • 10. Kairytė A., Kremensas A., Vaitkus S., Członka S., Strąkowska A., Fire suppression and thermal behavior of biobased rigid polyurethane foam filled with biomass incineration waste ash, Polymers 2020, 12, 683, DOI: 10.3390/polym12030683.
  • 11. Sałasińska K., Ryszkowska J., Dimensional stability, physical, mechanical and thermal properties of high density polyethylene with peanut hulls composites, Polimery 2013, 58, 461-466, DOI: 10.14314/polimery.2013.461.
  • 12. Gunjal J., Aggarwal P., Chauhan S., Changes in colour and mechanical properties of wood polypropylene composites on natural weathering, Maderas Ciencia Tecnol. 2020, 22, 325-334, DOI: 10.4067/S0718-221X2020005000307.
  • 13. Barczewski M., Sałasińska K., Kloziński A., Skorczewska K., Szulc J., Piasecki A., Application of the basalt powder as a filler for polypropylene composites with improved thermomechanical stability and reduced flammability, Polym. Eng. Sci. 2019, 59, E71-79, DOI: 10.1002/pen.24962.
  • 14. Andrzejewski J., Misra M., Mohanty A.K., Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization, J. Appl. Polym. Sci. 2018, 135, 46449, DOI: 10.1002/app.46449.
  • 15. Ahmed A., Ugai K., Kamei T., Investigation of recycled gypsum in conjunction with waste plastic trays for ground improvement, Constr. Build. Mater. 2011, 25, 208-217, DOI: 10.1016/j.conbuildmat.2010.06.036.
  • 16. Guo Y., Jiang K., Bourell D.L., Preparation and laser sintering of limestone PA 12 composite, Polym. Test. 2014, 37, 210-215, DOI: 10.1016/j.polymertesting.2014.06.002.
  • 17. Kumar S.R., Bhat I.K., Patnaik A., Novel dental composite material reinforced with silane functionalized microsized gypsum filler particles, Polym. Compos. 2017, 38, 404-415, DOI: 10.1002/pc.23599.
  • 18. Ramos F.J.H.T.V., Mendes L.C., Recycled high-density polyethylene/gypsum composites: evaluation of the microscopic,
  • thermal, flammability, and mechanical properties, Green Chem. Lett. Rev. 2014, 7, 199-208, DOI: 10.1080/ 17518253.2014.924591.
  • 19. Bilici I., Deniz C.U., Oz B., Thermal and mechanical characterization of composite produced from recycled PE and flue gas desulfurization gypsum, J. Compos. Mater. 2019, 53, 3325-3333, DOI: 10.1177/0021998319827097.
  • 20. Jakubowska P., Sterzynski T., Samujlo B., Rheological studies of highly-filled polyolefin composites taking into consideration p-V-T characteristics, Polimery 2010, 55, 379-389.
  • 21. Mysiukiewicz O., Kosmela P., Barczewski M., Hejna A., Mechanical, thermal and rheological properties of polyethylene-based composites filled with micrometric aluminium powder, Materials 2020, 13, 1242, DOI: 10.3390/ma13051242.
  • 22. Brostow W., Hagg Lobland H.E., Narkis M., Sliding wear, viscoelasticity, and brittleness of polymers, J. Mater. Res. 2006, 21, 2422-2428, DOI: 10.1557/jmr.2006.0300.
  • 23. Brostow W., Hagg Lobland H.E., Khoja S., Brittleness and toughness of polymers and other materials, Mater. Lett. 2015, 159, 478-480, DOI: 10.1016/j.matlet.2015.07.047.
  • 24. Galeja M., Hejna A., Kosmela P., Kulawik A., Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle, Materials 2020, 13, 297, DOI: 10.3390/ma13020297.
  • 25. Bindu P., Thomas S., Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles, J. Phys. Chem. B 2013, 117, 12632- -12648, DOI: 10.1021/jp4039489.
  • 26. Abdalla M., Dean D., Adibempe D., Nyairo E., Robinson P., Thompson G., The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite, Polymer 2007, 48, 5662- -5670, DOI: 10.1016/j.polymer.2007.06.073.
  • 27. Krishnan J.M., Deshpande A.P., Kumar P.B.S., editors. Rheology of Complex Fluids, Springer, New York 2010, DOI: 10.1007/978-1-4419-6494-6.
  • 28. Hejna A., Piszcz-Karaś K., Filipowicz N., Cieśliński H., Namieśnik J., Marć M., Klein M., Formela K., Structure and performance properties of environmentally-friendly biocomposites based on poly(ɛ-caprolactone) modified with copper slag and shale drill cuttings wastes, Sci. Total Environ. 2018, 640-641, 1320-1331, DOI: 10.1016/j.scitotenv. 2018.05.385.
  • 29. Salasinska K., Polka M., Gloc M., Ryszkowska J., Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based composites, Polimery 2016, 61, 255-265, DOI: 10.14314/ polimery.2016.255.
  • 30. Ghazi Wakili K., Hugi E., Wullschleger L., Frank T., Gypsum board in fire – modeling and experimental validation, J. Fire Sci. 2007, 25, 267-282, DOI: 10.1177/0734904107072883.
  • 31. Jin Q., Perry L.N., Bullard J.W., Temperature dependence of gypsum dissolution rates, Cem. Concr. Res. 2020, 129, 105969, DOI: 10.1016/j.cemconres.2019.105969.
  • 32. Gray J.M., The variable and absolute specific heats of water, Proc. Inst. Civil Eng. 1902, 147, 347-376.
  • 33. Kubat J., Rigdahl M., Welander M., Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis, J. Appl. Polym. Sci. 1990, 39, 1527-1539, DOI: 10.1002/ app.1990.070390711.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5481a637-ce60-4c16-a833-989fb1c97035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.