PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Output-input properties of incident light on a defect dielectric slab with quantum dot nanostructure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrate output-input properties of incident light in a defect slab doped by three-level quantum dot nanostructure via quantum coherence and Fano-interference phenomena. Here, we will show that the output-input properties of the system can be adjusted by the Fano-interference strength, amplitude and the relative phase of the driving fields, respectively. Also, we consider the thickness effect of defect medium on controlling the output-input behaviors of probe light. Moreover, we realize that it is possible to switch between optical bistability and optical multistability by optimizing the conditions which are more practical in all-optical switching based nanoscale devices.
Czasopismo
Rocznik
Strony
101--113
Opis fizyczny
Bibliogr. 69 poz., rys.
Twórcy
  • Sama Technical and Vocational Training College, Islamic Azad University, Tabriz Branch, Tabriz, Iran
Bibliografia
  • [1] YING WU, DENG L., Ultraslow optical solitons in a cold four-state medium, Physical Review Letters 93(14), 2004, article ID 143904, DOI: 10.1103/PhysRevLett.93.143904.
  • [2] ZHIPING WANG, BENLI YU, High-precision two-dimensional atom localization via quantum interference in a tripod-type system, Laser Physics Letters 11(3), 2014, article ID 035201, DOI: 10.1088/ 1612-2011/11/3/035201.
  • [3] SZÖKE A., DANEU V., GOLDHAR J., KURNIT N.A., Bistable optical element and its applications, Applied Physics Letters 15(11), 1969, pp. 376–379, DOI: 10.1063/1.1652866.
  • [4] GIBBS H.M., MCCALL S.L., VENKATESAN T.N.C., Differential gain and bistability using a sodium -filled Fabry–Perot interferometer, Physical Review Letters 36(19), 1976, p. 1135, DOI: 10.1103/ PhysRevLett.36.1135.
  • [5] JOSHI A., XIAO M., Atomic optical bistability in two- and three-level systems: perspectives and prospects, Journal of Modern Optics 57(14–15), 2010, pp. 1196–1220, DOI: 10.1080/09500340.20- 10.492919.
  • [6] ROSENBERGER A.T., OROZCO L.A., KIMBLE H.J., Observation of absorptive bistability with two-level atoms in a ring cavity, Physical Review A 28(4), 1983, p. 2569(R), DOI: 10.1103/PhysRevA.28.2569.
  • [7] OROZCO L.A., ROSENBERGER A.T., KIMBLE H.J., Optical bistability in the mixed absorptive-dispersive regime with two-state atoms, Physical Review A 36(7), 1987, p. 3248, DOI: 10.1103/PhysRevA.36.3248.
  • [8] BOYD R.W., Nonlinear Optics, Academic Press, 2003.
  • [9] MIN XIAO, YONG-QING LI, SHAO-ZHENG JIN, GEA-BANACLOCHE J., Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms, Physical Review Letters 74(5), 1995, p. 666, DOI: 10.1103/PhysRevLett.74.666.
  • [10] VESTERGAARD HAU L., HARRIS S.E., DUTTON Z., BEHROOZI C.H., Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397, 1999, pp. 594–598, DOI: 10.1038/17561.
  • [11] BUDKER D., KIMBALL D.F., ROCHESTER S.M., YASHCHUK V.V., Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation, Physical Review Letters 83(9), 1999, p. 1767, DOI: 10.1103/PhysRevLett.83.1767.
  • [12] SCULLY M.O., ZUBAIRY M.S., Quantum Optics, Cambridge Press, London 1997.
  • [13] JAMSHIDNEJAD M., VAEZZADEH M., SOLEIMANI H.R., ASADPOUR S.H., Polarized control of probe absorption in a single-layer graphene nanostructure system, Laser Physics 26(2), 2016, article ID 025205, DOI: 10.1088/1054-660X/26/2/025205.
  • [14] TOKMAN M., YAO X., BELYANIN A., Generation of entangled photons in graphene in a strong magnetic field, Physical Review Letters 110(7), 2013, article ID 077404, DOI: 10.1103/PhysRevLett.110.077404.
  • [15] ZIBROV A., LUKIN M., NIKONOV D., HOLLBERG L., SCULLY M., VELICHANSKY V., ROBINSON H., Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb, Physical Review Letters 75(8), 1995, p. 1499, DOI: 10.1103/PhysRevLett.75.1499.
  • [16] TRUSCOTT A., FRIESE M., HECKENBERG N., RUBINSZTEIN-DUNLOP H., Optically written waveguide in an atomic vapor, Physical Review Letters 82(7), 1999, p. 1438, DOI: 10.1103/PhysRevLett.82.1438.
  • [17] LIU C., DUTTON Z., BEHROOZI C.H., VESTERGAARD HAU L., Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409, 2001, pp. 490–493, DOI: 10.1038/35054017.
  • [18] SOLOOKINEJAD G., PANAHI M., AHMADI E., ASADPOUR S.H., Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure, Chinese Physics B 25(7), 2016, article ID 074204, DOI: 10.1088/ 1674-1056/25/7/074204.
  • [19] ASADPOUR S.H., SOLEIMANI H.R., Phase and thickness control of optical bistability and multistability in a defect slab with a single layer of graphene, Laser Physics Letters 13(1), 2016, article ID 015201, DOI: 10.1088/1612-2011/13/1/015201.
  • [20] ASADPOUR S.H., HAMEDI H., SOLEIMANI H.R., Role of incoherent pumping field on absorption–dispersion properties of probe pulse in a graphene nanostructure under external magnetic field, Physica E 71, 2015, pp. 123–129, DOI: 10.1016/j.physe.2015.03.014.
  • [21] ZHONGHU ZHU, AI-XI CHEN, WEN-XING YANG, RAY-KUANG LEE, Phase knob for switching steady-state behaviors from bistability to multistability via spontaneously generated coherence, Journal of the Optical Society of America B 31(9), 2014, pp. 2061–2067, DOI: 10.1364/JOSAB.31.002061.
  • [22] SHAOPENG LIU, WEN-XING YANG, ZHONGHU ZHU, RAY-KUANG LEE, Effective terahertz signal detection via electromagnetically induced transparency in graphene, Journal of the Optical Society of America B 33(2), 2016, pp. 279–285, DOI: 10.1364/JOSAB.33.000279.
  • [23] SHAOPENG LIU, WEN-XING YANG, ZHONGHU ZHU, SHASHA LIU, RAY-KUANG LEE, Effective hyper-Raman scattering via inhibiting electromagnetically induced transparency in monolayer graphene under an external magnetic field, Optics Letters 41(12), 2016, pp. 2891–2894, DOI: 10.1364/OL.41.002891.
  • [24] SHAOPENG LIU, WEN-XING YANG, ZHONGHU ZHU, Coherent control of the Goos–Hänchen shift via Fano interference, Journal of Applied Physics 119(14), 2016, article ID 143101, DOI: 10.1063/ 1.4945699.
  • [25] WEN-XING YANG, JIA-WEI LU, ZHI-KANG ZHOU, LONG YANG, RAY-KUANG LEE, Phase control of light propagation via Fano interference in asymmetric double quantum wells, Journal of Applied Physics 115(20), 2014, article ID 203104, DOI: 10.1063/1.4879435.
  • [26] TAO SHUI, WEN-XING YANG, AI-XI CHEN, SHAOPENG LIU, LING LI, ZHONGHU ZHU, High-precision two -dimensional atom localization from four-wave mixing in a double-Λ four-level atomic system, Laser Physics 28(3), 2018, article ID 035201, DOI: 10.1088/1555-6611/aa9e3a.
  • [27] WEN-XING YANG, SHAOPENG LIU, ZHONGHU ZHU, ZIAUDDIN, RAY-KUANG LEE, Tunneling-induced giant Goos–Hänchen shift in quantum wells, Optics Letters 40(13), 2015, pp. 3133–3136, DOI: 10.1364/OL.40.003133.
  • [28] ASADPOUR S.H., JABERI M., SOLEIMANI H.R., Phase control of optical bistability and multistability via spin coherence in a quantum well waveguide, Journal of the Optical Society of America B 30(7), 2013, pp. 1815–1820, DOI: 10.1364/JOSAB.30.001815.
  • [29] ASADPOUR S.H., SOLEIMANI H.R., Transmission and reflection properties of incident pulse in a dielectric slab doped with quantum dot, Superlattices and Microstructures 62, 2013, pp. 217–224, DOI: 10.1016/j.spmi.2013.07.017.
  • [30] ASADPOUR S.H., SOLEIMANI H.R., Optical bistability and multistability in a parametric region, Optical and Quantum Electronics 46(5), 2014, pp. 709–718, DOI: 10.1007/s11082-013-9781-2.
  • [31] ASADPOUR S.H., SOLEIMANI H.R., Switching from optical bistability to multistability via terahertz signal radiation in a InGaN/GaN quantum dot nanostructure, Optics Communications 321, 2014, pp. 104–109, DOI: 10.1016/j.optcom.2014.01.058.
  • [32] ASADPOUR S.H., Goos–Hänchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures, Applied Optics 56(8), 2017, pp. 2201–2208, DOI: 10.1364/AO.56.002201.
  • [33] SOLOOKINEJAD G., PANAHI M., AHMADI SANGACHIN E., ASADPOUR S.H., Observation of optical bistability in a polaritonic material doped with nanoparticles, Plasmonics 12(6), 2017, pp. 1881–1887, DOI: 10.1007/s11468-016-0458-0.
  • [34] LIU-GANG SI, WEN-XING YANG, XIN-YOU LÜ, XIANGYING HAO, XIAOXUE YANG, Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation, Physical Review A 82(1), 2010, article ID 013836, DOI: 10.1103/PhysRevA.82.013836.
  • [35] WEN-XING YANG, AI-XI CHEN, LIU-GANG SI, KAIJUN JIANG, XIAOXUE YANG, RAY-KUANG LEE, Three coupled ultraslow temporal solitons in a five-level tripod atomic system, Physical Review A 81(2), 2010, article ID 023814, DOI: 10.1103/PhysRevA.81.023814.
  • [36] ZHONGHU ZHU, AI-XI CHEN, YANFENG BAI, WEN-XING YANG, RAY-KUANG LEE, Controllable optical steady behavior from nonradiative coherence in GaAs quantum well driven by a single elliptically polarized field, Modern Physics Letters B 28(14), 2014, article ID 1450117, DOI: 10.1142/ S0217984914501176.
  • [37] ZHONGHU ZHU, WEN-XING YANG, XIAO-TAO XIE, SHASHA LIU, SHAOPENG LIU, RAY-KUANG LEE, Three -dimensional atom localization from spatial interference in a double two-level atomic system, Physical Review A 94(1), 2016, article ID 013826, DOI: 10.1103/PhysRevA.94.013826.
  • [38] ZHIPING WANG, BENLI YU, Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure, Journal of Applied Physics 113(11), 2013, article ID 113101, DOI: 10.1063/1.4795282.
  • [39] ZHIPING WANG, SHENGLAI ZHEN, BENLI YU, Controlling optical bistability of acceptor and donor quantum dots embedded in a nonlinear photonic crystal, Laser Physics Letters 12(4), 2015, article ID 046004, DOI: 10.1088/1612-2011/12/4/046004.
  • [40] ASADPOUR S.H., SOLEIMANI H.R., Phase control of optical bistability based biexciton coherence in a quantum dot nanostructure, Physica B: Condensed Matter 440, 2014, pp. 124–129, DOI: 10.1016/ j.physb.2014.01.033.
  • [41] ZHEN WANG, AI-XI CHEN, YANFENG BAI, WEN-XING YANG, RAY-KUANG LEE, Coherent control of optical bistability in an open Λ-type three-level atomic system, Journal of the Optical Society of America B 29(10), 2012, pp. 2891–2896, DOI: 10.1364/JOSAB.29.002891.
  • [42] ASADPOUR S.H., SOLEIMANI H.R., Role of exciton spin relaxation on optical bistability and multistability in a multiple quantum well nanostructure, Optical and Quantum Electronics 47(2), 2015, pp. 401 –412, DOI: 10.1007/s11082-014-9922-2.
  • [43] SHANG-QING GONG, SI-DE DU, ZHI-ZHAN XU, Optical bistability via atomic coherence, Physics Letters A 226(5), 1997, pp. 293–297, DOI: 10.1016/S0375-9601(96)00931-0.
  • [44] HARSHAWARDHAN W., AGARWAL G.S., Controlling optical bistability using electromagnetic-field -induced transparency and quantum interferences, Physical Review A 53(3), 1996, p. 1812, DOI: 10.1103/PhysRevA.53.1812.
  • [45] JOSHI A., XIAO M., Controlling nonlinear optical processes in multi-level atomic systems, [In] Progress in Optics, Vol. 49, 2006, pp. 97–175, DOI: 10.1016/S0079-6638(06)49002-8.
  • [46] HONG CHANG, HAIBIN WU, CHANGDE XIE, HAI WANG, Controlled shift of optical bistability hysteresis curve and storage of optical signals in a four-level atomic system, Physical Review Letters 93(21), 2004, article ID 213901, DOI: 10.1103/PhysRevLett.93.213901.
  • [47] YANG W., JOSHI A., XIAO M., Controlling dynamic instability of three-level atoms inside an optical ring cavity, Physical Review A 70(3), 2004, article ID 033807, DOI: 10.1103/PhysRevA.70.033807.
  • [48] JOSHI A., XIAO M., Optical multistability in three-level atoms inside an optical ring cavity, Physical Review Letters 91(14), 2003, article ID 143904, DOI: 10.1103/PhysRevLett.91.143904.
  • [49] JOSHI A., YANG W., XIAO M., Dynamical hysteresis in a three-level atomic system, Optics Letters 30(8), 2005, pp. 905–907, DOI: 10.1364/OL.30.000905.
  • [50] AIXI CHEN, Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures, Optics Express 22(22), 2014, pp. 26991–27000, DOI: 10.1364/OE.22.026991.
  • [51] SCHMIDT H., CAMPMAN K.L., GOSSARD A.C., IMAMOǦLU A., Tunneling induced transparency: Fano interference in intersubband transitions, Applied Physics Letters 70(25), 1997, pp. 3455–3457, DOI: 10.1063/1.119199.
  • [52] PHILLIPS M., WANG H., Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well, Optics Letters 28(10), 2003, pp. 831–833, DOI: 10.1364/ OL.28.000831.
  • [53] ASADPOUR S.H., SAHRAI M., SADIGHI-BONABI R., SOLTANI A., MAHRAMI H., Enhancement of Kerr nonlinearity at long wavelength in a quantum dot nanostructure, Physica E: Low-dimensional Systems and Nanostructures 43(10), 2011, pp. 1759–1762, DOI: 10.1016/j.physe.2011.04.024.
  • [54] LI J.H., YANG X.X., Optical bistability via tunable Fano-type interference in asymmetric semiconductor quantum wells, The European Physical Journal B 53(4), 2006, pp. 449–454, DOI: 10.1140/ epjb/e2006-00411-7.
  • [55] JIA-HUA LI, XIANG-YING HAO, Two-color coherent control of optical bistability in asymmetric semiconductor quantum wells, Modern Physics Letters B 22(6), 2008, pp. 393–404, DOI: 10.1142/ S0217984908014948.
  • [56] ZHIPING WANG, HONGYI FAN, Phase-dependent optical bistability and multistability in a semiconductor quantum well system, Journal of Luminescence 130(11), 2010, pp. 2084–2088, DOI: 10.1016/ j.jlumin.2010.05.031.
  • [57] SOLOOKINEJAD G., PANAHI M., SANGACHIN E.A., ASADPOUR S.H., Plasmonic nanostructure induced simultaneous slow and fast light propagation in a slab doped by four-level quantum dots, Journal of Nonlinear Optical Physics and Materials 25(3), 2016, article ID 1650031, DOI: 10.1142/ S0218863516500314.
  • [58] SOLOOKINEJAD G., PANAHI M., SANGACHIN E.A., ASADPOUR S.H., Spin coherence control of optical bistability via light hole transition in multiple quantum well waveguide embedded in a dielectric medium, Journal of Nonlinear Optical Physics and Materials 25(3), 2016, article ID 1650035, DOI: 10.1142/S0218863516500351.
  • [59] ASADPOUR S.H., HAMEDI H.R., Giant Kerr nonlinearity in an n-doped semiconductor quantum well, Optical and Quantum Electronics 45(1), 2013, pp. 11–20, DOI: 10.1007/s11082-012-9598-4.
  • [60] ASADPOUR S.H., GOLSANAMLOU Z., SOLEIMANI H.R., Infrared and terahertz signal detection in a quantum dot nanostructure, Physica E: Low-dimensional Systems and Nanostructures 54, 2013, pp. 45–52, DOI: 10.1016/j.physe.2013.05.022.
  • [61] NIAN-HUA LIU, SHI-YAO ZHU, HONG CHEN, XIANG WU, Superluminal pulse propagation through one -dimensional photonic crystals with a dispersive defect, Physical Review E 65(4), 2002, article ID 046607, DOI: 10.1103/PhysRevE.65.046607.
  • [62] LI-GANG WANG, NIAN-HUA LIU, QIANG LIN, SHI-YAO ZHU, Superluminal propagation of light pulses: a result of interference, Physical Review E 68(6), 2003, article ID 066606, DOI: 10.1103/PhysRevE.68.066606.
  • [63] LI-GANG WANG, HONG CHEN, SHI-YAO ZHU, Superluminal pulse reflection and transmission in a slab system doped with dispersive materials, Physical Review E 70(6), 2004, article ID 066602, DOI: 10.1103/PhysRevE.70.066602.
  • [64] LUO X.Q., WANG D.L., ZHANG Z.Q., DING J.W., LIU W.M., Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical and longitudinal phonons, Physical Review A 84(3), 2011, article ID 033803, DOI: 10.1103/PhysRevA.84.033803.
  • [65] WEN-XING YANG, JING-MIN HOU, RAY-KUANG LEE, Ultraslow bright and dark solitons in semiconductor quantum wells, Physical Review A 77(3), 2008, article ID 033838, DOI: 10.1103/PhysRevA.77.033838.
  • [66] YAO X., BELYANIN A., Giant optical nonlinearity of graphene in a strong magnetic field, Physical Review Letters 108(25), 2012, article ID 255503, DOI: 10.1103/PhysRevLett.108.255503.
  • [67] JIANG Z., HENRIKSEN E.A., TUNG L.C., WANG Y.-J., SCHWARTZ M.E., HAN M.Y., KIM P., STORMER H.L., Infrared spectroscopy of Landau levels of graphene, Physical Review Letters 98(19), 2007, article ID 197403, DOI: 10.1103/PhysRevLett.98.197403.
  • [68] CHUNLING DING, RONG YU, JIAHUA LI, XIANGYING HAO, YING WU, Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field, Journal of Applied Physics 115(23), 2014, article ID 234301, DOI: 10.1063/1.4883765.
  • [69] SHISHENG HUANG, YONGGANG WANG, PEIGUANG YAN, JUNQING ZHAO, HUIQUAN LI, RONGYONG LIN, Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode -locked Yb-doped fiber laser, Optics Express 22(10), 2014, pp. 11417–11426, DOI: 10.1364/ OE.22.011417.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-548080f0-f217-4b71-9d18-5c7532595196
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.