PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Two-step etch in n-on-p type-II superlattices for surface leakage reduction in mid-wave infrared megapixel detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
This work investigates the potential of p-type InAs/GaSb superlattice for the fabrication of full mid-wave megapixel detectors with n-on-p polarity. A significantly higher surface leakage is observed in deep-etched n-on-p photodiodes compared to p-on-n diodes. Shallowetch and two-etch-step pixel geometry are demonstrated to mitigate the surface leakage on devices down to 10 μm with n-on-p polarity. A lateral diffusion length of 16 μm is extracted from the shallow etched pixels, which indicates that cross talk could be a major problem in small pitch arrays. Therefore, the two-etch-step process is used in the fabrication of 1280 × 1024 arrays with a 7.5 μm pitch, and a potential operating temperature up to 100 K is demonstrated.
Twórcy
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
autor
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  • IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
Bibliografia
  • [1] Ting, D. Z.-Y. et al. Type-II superlattice infrared detectors. Semicond. Semimet. 84, 1-57 (2011). https://doi.org/10.1016/B978-0-12-381337-4.00001-2
  • [2] Höglund, L. et al. Type-II superlattices for SWaP and highresolution detectors at IRnova. Proc. SPIE 11741, 117410X (2021). https://doi.org/10.1117/12.2588334
  • [3] Ting, D. Z. et al. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors. Micromachines 11, 958 (2020). https://doi.org/10.3390/mi11110958
  • [4] Forrai, D. et al. Transitioning large-diameter type II superlattice detector wafers to manufacturing. Proc. SPIE 10624, 106240L (2018). https://doi.org/10.1117/12.2311515
  • [5] Gunapala, S. D. et al. T2SL meta-surfaced digital focal plane arrays for Earth remote sensing applications. Proc. SPIE 11129, 111290C (2019). https://doi.org/10.1117/12.2533477
  • [6] Ivanov, R. et al. T2SL development for space at IRnova: from eSWIR to VLWIR. Proc. SPIE 11151, 1115111 (2019). https://doi.org/10.1117/12.2533247
  • [7] Ting, D. Z. et al. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photon. J. 10, 6804106 (2018). https://doi.org/10.1109/JPHOT.2018.2877632
  • [8] Delmas, M. et al. HOT MWIR T2SL detectors to reduce system size, weight, and power. Proc. SPIE 11858, 118580Z (2021). https://doi.org/10.1117/12.2599856
  • [9] Pepper, B. J. et al. GaSb grass as a novel antireflective surface for infrared detectors. Proc. SPIE 11002, 110020X (2019). https://doi.org/10.1117/12.2521095
  • [10] Soibel, A. et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl. Phys. Lett. 114, 161103 (2019). https://doi.org/10.1063/1.5092342
  • [11] Giard, E. et al. Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors. J. Appl. Phys. 116, 043101 (2014). https://doi.org/10.1063/1.4890309
  • [12] Soibel, A. et al. High operating temperature nBn detector with monolithically integrated microlens. Appl. Phys. Lett. 112, 041105 (2018). https://doi.org/10.1063/1.5011348
  • [13] Ramos, D. et al. Quasi-3-dimensional simulations and experimental validation of surface leakage currents in high operating temperature type- II superlattice infrared detectors. J. Appl. Phys. 132, 204501 (2022). https://doi.org/10.1063/5.0106878
  • [14] Marozas, B. T. et al. Surface dark current mechanisms in III-V infrared photodetectors [Invited]. Opt. Mater. Express 8, 1419-1424 (2018). https://doi.org/10.1364/OME.8.001419
  • [15] Savich, G. R., Pedrazzani, J. R., Sidor, D. E., Maimon, S. & Wicks, G. W. Dark current filtering in unipolar barrier infrared detectors. Appl. Phys. Lett. 99, 2009-2012 (2011). https://doi.org/10.1063/1.3643515
  • [16] Sidor, D. E., Savich, G. R. & Wicks, G. W. Surface leakage mechanisms in III–V infrared barrier detectors. J. Electron. Mater. 45, 4663-4667 (2016). https://doi.org/10.1007/s11664-016-4451-3
  • [17] Sidor, D. E., Savich, G. R. & Wicks, G. W. Surface conduction in InAs and GaSb. Proc. SPIE 9616, 96160U (2015). https://doi.org/10.1117/12.2188878
  • [18] Ting, D. Z. et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array. Appl. Phys. Lett. 113, 1-5 (2018). https://doi.org/10.1063/1.5033338
  • [19] Soibel, A. et al. Long wavelength infrared superlattice detectors and FPAs based on CBIRD design. IEEE Photonics Technol. Lett. 25, 875-878 (2013). https://doi.org/10.1109/LPT.2013.2254111
  • [20] Du, X., Marozas, B. T., Savich, G. R. & Wicks, G. W. Defect-related surface currents in InAs-based nBn infrared detectors. J. Appl. Phys. 123, 214504 (2018). https://doi.org/10.1063/1.5027637
  • [21] Bouschet, M. et al. Influence of pixel etching on electrical and electro-optical performances of a Ga-free InAs/InAsSb T2SL barrier photodetector for mid-wave infrared imaging. Photonics 8, 194 (2021). https://doi.org/10.3390/photonics8060194
  • [22] Klipstein, P. C. et al. Minority carrier lifetime and diffusion length in type II superlattice barrier devices. Infrared Phys. Technol. 96, 155-162 (2019). https://doi.org/10.1016/j.infrared.2018.11.022
  • [23] Du, X., Savich, G. R., Marozas, B. T. & Wicks, G. W. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design. J. Electron. Mater. 47, 1038-1044 (2018). https://doi.org/10.1007/s11664-017-5753-9
  • [24] Plis, E. et al. Dual color longwave InAs/GaSb type-II strained layer superlattice detectors. Infrared Phys. Technol. 70, 93-98 (2015). https://doi.org/10.1016/j.infrared.2014.09.027
  • [25] Razeghi, M., Dehzangi, A. & Li, J. Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector. Results Opt. 2, 100054 (2021). https://doi.org/10.1016/j.rio.2021.100054
  • [26] Nolde, J. A. et al. Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors. Appl. Phys. Lett. 111, 051102 (2017). https://doi.org/10.1063/1.4997172
  • [27] Asplund, C., Marcks von Würtemberg, R. & Höglund, L. Modeling tools for design of type-II superlattice photodetectors. Infrared Phys. Technol. 84, 21-27 (2017). https://doi.org/10.1016/j.infrared.2017.03.006
  • [28] Asplund, C. et al. Performance of mid-wave T2SL detectors with heterojunction barriers. Infrared Phys. Technol. 59, 22-27 (2013). https://doi.org/10.1016/j.infrared.2012.12.004
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-547f082a-10ae-4db7-8d94-34b273343bf8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.