Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study aimed to analyse the seasonal variability of phosphorus concentrations and phosphorus content and the impact of catchment development of the Panew Mała River. The study presents the findings of a two-year experimental investigation (comprising 17 measurement series across 12 measurement cross-sections) into the concentration of phosphorus (P) and its soluble form, orthophosphates (PO42-). The mean phosphate concentrations were found to be low, with a range of 0.03 to 0.08 PO42-mg∙dm-3. In contrast, the total phosphorus concentrations were relatively high, with a range of 0.11 to 0.43 mg∙dm-3 P. The seasonal variability was analysed based on quarterly means and half-yearly periods covering quarters II and III (spring-summer) and quarters I and IV (autumn-winter), respectively. The analysis of spatial variability was conducted using cluster analysis according to Ward’s method, with the Euclidean distance employed as a measure of distance and the results related to the utilisation of different catchment area. Due to the slight differences in the phosphate concentration, the total phosphorus concentration was analysed in detail. The analysis of variance showed no significant differences between phosphorus concentrations in certain quarters, while greater variations were obtained for half-yearly periods. The applied method of grouping the sampling sites made it possible to distinguish several groups of sampling sites, which indicate relations between the values of phosphorus concentration in the waters of Mała Panew and the type of use of the catchment area.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
241--251
Opis fizyczny
Bibliogr. 46 poz., mapa, tab., wykr.
Twórcy
- Institute of Technology and Life Sciences – National Research Institute, Institute of Technology and Life Science – National Research Institute, Falenty, 3 Hrabska Ave., 05-090 Raszyn, Poland
autor
- Wroclaw University of Environmental and Life Sciences, Faculty of Environmental Engineering and Geodesy, Norwida 25, 50-375 Wrocław, Poland
autor
- Institute of Technology and Life Sciences – National Research Institute, Institute of Technology and Life Science – National Research Institute, Falenty, 3 Hrabska Ave., 05-090 Raszyn, Poland
autor
- Institute of Technology and Life Sciences – National Research Institute, Institute of Technology and Life Science – National Research Institute, Falenty, 3 Hrabska Ave., 05-090 Raszyn, Poland
Bibliografia
- Armstrong, B.M. et al. (2012) “Determining the effects of ammonia on fathead minnow (Pimephales promelas) reproduction,” Science of The Total Environment, 420, pp. 127–133. Available at: https://doi.org/10.1016/j.scitotenv.2012.01.005.
- Balcerzak, W.P. and Rybicki, S.M. (2011) “Ocena stopnia zagrożenia wody eutrofizacją na przykładzie zbiornika zaporowego w Świnnej Porębie [Assessment of water eutrophication risk exemplified by the Swinna Poreba dam reservoir],” Ochrona Środowiska, 33(4) pp. 67–69. Available at: http://www.os.not.pl/docs/czasopismo/2011/4-2011/Balcerzak_4-2011.pdf (Accessed: October 3, 2024).
- Bartnicki, J. (2019) “Atmospheric contribution to eutrophication of the Baltic Sea,” Air Pollution Modeling and its Application, 26, pp. 53–57. Available at: https://doi.org/10.1007/978-3-030-22055-6_9.
- Bogdał, A. et al. (2019) “Assessment of the impact of forestry and settlement-forest use of the catchments on the parameters of surface water quality: Case studies for Chechło Reservoir Catchment, Southern Poland,” Water 11(5), 964. Available at: https://doi.org/10.3390/w11050964.
- Burzyńska, I. (2015) “Zmiany stężeń fosforanów w wodach rolniczej zlewni rzeki Raszynki [The dynamic of phosphate concentration in surface waters of agricultural catchment area Raszynka River],” Polish Journal of Agronomy, 23, pp. 24–30. Available at: https://www.iung.pl/PJA/wydane/23/PJA23_24_30.pdf (Accessed: October 3, 2024).
- Cieśla, M. and Gruca-Rokosz, R. (2023) “Influence of the manner of water discharge from dam reservoirs on downstream water quality,” Journal of Water and Land Development, 56, pp. 91–101. Available at: https://doi.org/10.24425/jwld.2023.143749.
- Correll, D. (1998) “The role of phosphorus in the eutrophication of receiving waters: A review,” Journal of Environmental Quality, 27, pp. 261–266. Available at: https://www.sciencetheearth.com/uploads/2/4/6/5/24658156/1998_correll_the_role_of_phosphoru-s_in_the_eutrophication_of_receiving_waters-_a_review.pdf (Accessed: October 3, 2024).
- Cygan, A., Kłos, A. and Wieczorek, P. (2021) “Using makroelement content to characterize surficial water quality of artificial reservoirs,” Water, Air, & Soil Pollution, 232, 408. Available at: https://link.springer.com/article/10.1007/s11270-021-05350-6 (Accessed: October 3, 2024).
- Czaplicka-Kotas, A. et al. (2012) “Analiza zależności między wskaźnikami jakości wody w Jeziorze Goczałkowickim w aspekcie zakwitów fitoplanktonu [Analysis of relations between water quality parameters of Lake Goczalkowickie with regard to phytoplankton blooms,” Ochrona Środowiska, 34(1), pp. 21–27. Available at: http://www.os.not.pl/docs/czasopismo/2012/1-2012/Czaplicka_1-2012.pdf (Accessed: October 3, 2024).
- Dębska, K., Rutkowska, B. and Szulc, W. (2022) “Influence of the catchment area use on the water quality in the Utrata River,” Environmental Monitoring and Assessment, 194, 165. Available at: https://doi.org/10.1007/s10661-022-09821-z.
- EEA (2015) The European Environment – state and outlook 2015: Synthesis report. Copenhagen: European Environment Agency. Available at: https://doi.org/10.2800/944899.
- Fudała, W., Bogdał, A. and Kowalik, T. (2023) “Impact of a small storage reservoir on the hydro-chemical regime of a flysch stream: A case study for the Korzeń stream (Poland),” Journal of Water and Land Development, 59, pp. 13–24. Available at: https://doi.org/10.24425/jwld.2023.147224.
- Gardner, C.M.K., Cooper, D.M. and Hughes, S. (2002) “Phosphorus in soils and field drainage water in the Thame catchment, UK,” The Science of The Total Environment, 282–283, pp. 253–262. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0048969701009135?via%3Dihub (Accessed: October 3, 2024).
- Gburek, W.J. and Sharpley, A.N. (1998) “Hydrologic controls on phosphorus loss from agricultural watersheds,” Journal of Environmental Quality, 27, pp. 267–277. Available at: https://doi.org/10.2134/jeq1998.00472425002700020005x.
- Geoportal (no date) Hydrographic map of Poland in scale 1:50 000. Available at: http://mapy.geoportal.gov.pl/wss/service/img/guest/HYDRO/MapServer/WMSServer? (Accessed: October 3, 2024).
- GIOŚ (2018) Corine Land Cover 2018 – CLC 2018. Warszawa: Główny Inspektorat Ochrony Środowiska. Available at: https://clc.gios.gov.pl (Accessed: October 3, 2024).
- Gruss, Ł. et al. (2021) “Determination of changes in the quality of surface water in the river-reservoir system,” Sustainability, 13, 3457. Available at: https://doi.org/10.3390/su13063457.
- Ilnicki, P. (2004) Polskie rolnictwo a ochrona środowiska [Polish agriculture and environmental protection]. Poznań: Wydaw. AR w Poznaniu.
- Islam, S., Phoungthong, K. and Idris, A.M. (2022) “Physicochemical properties of water in an intensive agricultural region in Bangladesh: A preliminary study for water quality and health risk assessment,” International Journal of Environmental Analytical Chemistry, 104(12), pp. 2801–2822. Available at: https://doi.org/10.1080/03067319.2022.2071613.
- Jadczyszyn, T. and Rutkowska, A. (2012) “The role of regulations in the protection of water resources,” in M. Pastuszak and J. Igras (eds.) Temporal and spatial differences in emission of nitrogen and phosphorus from Polish territory to the Baltic Sea. Gdynia–Puławy National Marine Fisheries Research Institute, Institute of Soil Science and Plant Cultivation – State Research Institute, Fertilizer Research Institute, pp. 245–261. Available at: https://mir.gdynia.pl/wp-content/uploads/2016/04/TEMPORAL-AND-SPATIAL-DIFFERENCES-IN-EMISSION-OF-NITROGEN-AND-PHOS- PHORUS-FROM-POLISH-TERRITORY-TO-THE-BALTIC-SEA.pdf (Accessed: October 3, 2024).
- Janicka, E. et al. (2022) “Variability of nitrogen and phosphorus content and their forms in waters of a River Lake System,” Frontiers in Environmental Science, 10, 874754. Available at: https://doi.org/10.3389/fenvs.2022.874754.
- Kändler, M. et al. (2017) “Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany,” Science of The Total Environment, 586, pp. 1316–1325. Available at: https://doi.org/10.1016/j.scitotenv.2016.10.221.
- Kim, M. et al. (2011) “Phosphorus losses from agricultural soils to surface waters in a small agricultural watershed,” Biosystems Engineering, 109(1), pp. 10–14. Available at: https://doi.org/10.1016/j.biosystemseng.2011.01.009.
- Koc, J. and Sidoruk, M. (2005) “Wpływ użytkowania zlewni na ładunek fosforu dopływający do jezior z wodami powierzchniowymi [Effect of land use on the load of phosphorus supplied into lakes with surface water],” Zeszyty Problemowe Postępów Nauk Rolniczych, 505, pp. 159–167. Available at: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-80eb4bfd-dfb7-47dc-847c-49d268ef36ed/c/159-167.pdf&ved=2a-hUKEwjgneDZg52KAxUlGBAIHYIiBcEQFnoECBwQAQ&us-g=AOvVaw2rCa4fd464G7E7URI421rw (Accessed: October 3, 2024).
- Lach, K.S. et al. (2023) “The pollution of surface water in the agricultural catchment against the background of agrarian structure and production intensity,” Journal of Water and Land Development, 56, pp. 242–248. Available at: https://doi.org/10.24425/jwld.2023.143765.
- Lerner, D.N. and Harris, B. (2009) “The relationship between land use and groundwater resources and quality,” Land Use Policy, 26, pp. S265–S273. Available at: https://doi.org/10.1016/j.landuse-pol.2009.09.005.
- Lúcia, R. et al. (2020) “Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters,” Science of The Total Environment, 716, 137044. Available at: https://doi.org/10.1016/j.scitotenv.2020.137044.
- Matej-Lukowicz, K. et al. (2023) “Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland,” PeerJ, 8, e8381. Available at: https://peerj.com/articles/8381.
- Mc Dowell, R.W. and Haygarth, P.M. (2024) “Reducing phosphorus losses from agricultural land to surface water,” Current Opinion in Biotechnology, 89, 103181. Available at: https://doi.org/10.1016/j.copbio.2024.103181.
- Miller, J.D. et al. (2011) “Whole catchment land cover effects on water quality in the Lower Kaskaskia River Watershed,” Water Air Soil Pollution, 221, pp. 337–350. Available at: http://doi.org/10.1007/s11270-011-0794-9.
- Özalp, M., Yildirimerb, S. and Erdoğan Yükselc, E. (2023) “The impacts of human-induced disturbances on spatial and temporal stream water quality variations in mountainous terrain: A case study of Borcka Dam Watershed,” Heliyon, 9(8). Available at: https://doi.org/10.1016/j.heliyon.2023.e18827.
- Pastuszak, M. (2012) “Description of the Baltic Sea catchment area – focus on the Polish sub-catchment,” in M. Pastuszak and J. Igras (eds.) Temporal and spatial differences in emission of nitrogen and phosphorus from Polish territory to the Baltic Sea. Gdynia– Puławy: National Marine Fisheries Research Institute, Institute of Soil Science and Plant Cultivation – State Research Institute, Fertilizer Research Institute, pp. 15–44. Available at: https://mir.gdynia.pl/wp-content/uploads/2016/04/TEMPORAL-AND-SPA-TIAL-DIFFERENCES-IN-EMISSION-OF-NITROGEN-AND-PHOSPHORUS-FROM-POLISH-TERRITORY-TO-THE-BAL-TIC-SEA.pdf (Accessed: October 3, 2024).
- Pulikowski, K., Pawęska, K. and Bawiec, A. (2015) “Seasonal changes in phosphorus load flowing out of small agricultural catchments,” Journal of Ecological Engineering, 16(1), pp. 81–86. Available at: https://doi.org/10.12911/22998993/590.
- Rahutomo, S., Kovar, J.L. and Thompson, M.L. (2019) “Phosphorus transformations in stream bank sediments in Iowa, USA, at varying redox potentials,” Journal of Soils and Sediments, 19, pp. 1029–1039. Available at: https://doi.org/10.1007/s11368-018-2139-4.
- Rozporządzenie (2021) “Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych [Regulation of the Minister of the Infrastructure of June 25, 2021 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies, as well as environmental quality standards for priority substances],” Dz.U. 2021, poz. 1475. Available at: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001475/O/D20211475.pdf (Accessed: October 3, 2024).
- Rzętała, M. and Machowski, R. (2018) “Zlewnia Małej Panwii [Mała Panew catchment area],” Encyklopedia Województwa Śląskiego, 5. Available at: https://ibrbs.pl/index.php/Zlewnia_-Ma%C5%82ej_Panwi#cite_note-5 (Accessed: October 3, 2024).
- Savenko, V.S. and Savenko, A.V. (2022) “The main features of phosphorus transport in world rivers,” Water, 14(1), 16. Available at: https://doi.org/10.3390/w14010016.
- Schmalz, B. and Kruse, M. (2019) “Impact of land use on stream water quality in the German low mountain range Basin Gersprenz,” Landscape Online, 72, pp. 1–17. Available at: https://doi.org/10.3097/LO.201972.
- Selle, B., Schwientek, M. and Lischeid, G. (2013) “Understanding processes governing water quality in catchments using principal component scores,” Journal of Hydrology, 486, pp. 31–38. Available at: https://doi.org/10.1016/j.jhydrol.2013.01.030.
- Sliva, L. and Williams, D.D. (2001) “Buffer zone versus whole catchment approaches to studying land use impact on river water quality,” Water Research, 35(14), pp. 3462–3472. Available at: https://doi.org/10.1016/S0043-1354(01)00062-8.
- Sobolewska, A. and Wylęgała, L. (2012) Ocena stanu wód powierzchniowych zlewni Małej Panwi wraz z tendencją zmian w latach 2007-2011 [Assessment of the surface water condition in the Mała Panew catchment area, including the trend of changes in the years 2007-2011]. Wojewódzki Inspektorat Ochrony Środowiska w Opolu. Available at: http://wroclaw.rzgw.gov.pl/files_mce/Turawa/4_wio__opole.pdf (Accessed: October 3, 2024).
- Solbe, J.F. de L.G. (ed.) (1986) Effects of land use on fresh waters: agriculture, forestry, mineral exploitation. London, UK: Ellis Horwood Ltd.
- Sonesten, L. et al. (2018) “Sources and pathways of nutrients to the Baltic Sea. HELCOM PLC-6,” Baltic Sea Environment Proceedings, 153. Available at: https://www.helcom.fi/wp-content/uploads/2019/08/BSEP153.pdf (Accessed: October 3, 2024).
- Steinhoff-Wrześniewska, A. et al. (2022) “Identification of catchment areas with nitrogen pollution risk for lowland river water quality,” Archives of Environmental Protection, 48(2) pp. 53–64. Available at: https://doi.org/10.24425/aep.2022.140766.
- Thi Ko, A. (2021) Assessment of the effects of upstream land uses and riparian vegetation composition on surface water quality of lowland streams. MSc Thesis. Christchurch: Lincoln University. Available at: https://hdl.handle.net/10182/14474 (Accessed: October 3, 2024).
- Wiatkowski, M. and Wiatkowska, B. (2019) “Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis,” Archives of Environmental Protection, 45(1), pp. 26–41. Available at: https://doi.org/10.24425/aep.2019.126339.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-547e1c13-b028-4534-a11b-3f1da26a6858
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.