PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribology Characteristics of Heatproof Alloys at a Dynamic Pin Ladening in the Variable Temperature Field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis of the operating conditions of gas turbine engines, their components, and the destruction causes was carried out. The designer problems of tribo-joints operating under difficult conditions of force and temperature loads are singled out. The study aimed at obtaining the comparable quantitative dependences of blade material wear, taking into account the role of both cyclical changes in the temperature of the gas flow under the conditions close to real ones, and their frictional characteristics. Deformable heat-resistant nickel alloys and foundry heat-resistant nickel alloys from which T-shaped samples were made, were chosen for the research. The tests were carried out on the developed gas dynamic stand, which simulates the working conditions of the bandage joints of the bladed turbomachines of gas turbine installations. The intensity of wear was determined as the ratio of the worn material volume to the number of load cycles under different temperature conditions. The wear resistance of three-way connections operating under the conditions of non-stationary thermal loads and fluctuations in the contact was considered. It was shown that thermal cycling leads to a decrease in the wear resistance of heat-resistant nickel alloys by 2–3 times and depends on the average temperature of the cycle. It was found that resistance to the wear, and also the character of change of coefficient of friction is mainly determined by the terms of education and destruction of the protective superficial layer. Basic factors managing tribology processes in the zone of contact were determined.
Twórcy
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Machine-tool Sand Instrument, National University "Zaporizhzhia Polytechnic", ul. Zhukovskogo 64, UA-69063 Zaporizhzhia, Ukraine
  • Department of Aircraft Engine Technology, National University "Zaporizhzhia Polytechnic", ul. Zhukovskogo 64, UA-69063 Zaporizhzhia, Ukraine
  • Department of Aircraft Engine Technology, National University "Zaporizhzhia Polytechnic", ul. Zhukovskogo 64, UA-69063 Zaporizhzhia, Ukraine
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Computerized Mechanical Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, ul. Karpatska 15, UA-76019 Ivano-Frankivsk, Ukraine
Bibliografia
  • 1. Qi L., Dong J., Hong W., Wang M., Lu T. Investigation of rotating detonation gas turbine cycle under design and off-design conditions. Energy 2023; 264: 126212. https://doi.org/10.1016/j. energy.2022.126212
  • 2. Molière M. The fuel flexibility of gas turbines: a review and retrospective outlook. Energies 2023; 16(9): 3962. https://doi.org/10.3390/en16093962
  • 3. Carvalho R., Hittinger E., Williams E. Payback of natural gas turbines: A retrospective analysis with implications for decarbonizing grids. Utilities Policy 2021; 73: 101307. https://doi.org/10.1016/j. jup.2021.101307
  • 4. Alhuyi Nazari M., Fahim Alavi M., Salem M., El Haj Assad M. Utilization of hydrogen in gas turines: A comprehensive review. International Journal of Low-Carbon Technologies 2022; 17: 513– 519. https://doi.org/10.1093/ijlct/ctac025
  • 5. Maruf M.H., July S.A., Rabbani M., Sahrani S., Hossain Lipu M.S., Sarker M.R., Ashique R.H., Kabir M.S., Shihavuddin A.S.M. Energy and exergy-based efficiency, sustainability and economic assessment towards improved energy management of a thermal power plant: A case study. Sustainability 2023; 15(6): 5452. https://doi.org/10.3390/su15065452
  • 6. Sayma A.I. Gas turbines for marine applications. In: Encyclopedia of Maritime and Offshore Engineering, John Wiley and Sons, Ltd. 2017, 1–10. https://doi.org/10.1002/9781118476406.emoe227
  • 7. Alzayedi A.M.T., Batra A., Sampath S., Pilidis P. Techno-environmental mission evaluation of combined cycle gas turbines for large container ship propulsion. Energies 2022; 15(12): 4426. https:// doi.org/10.3390/en15124426
  • 8. Li J., Ying Y., Wu Z. Gas turbine gas-path fault diagnosis in power plant under transient operating condition with variable geometry compressor. Energy Sci Eng. 2022; 10(9): 3423–3442. https://doi. org/10.1002/ese3.1229
  • 9. Chowdhury T.S., Mohsin F.T., Tonni M.M., Hasan Mita M.N., Monjurul Ehsan M. A critical review on gas turbine cooling performance and failure analysis of turbine blades. International Journal of Thermofluids 2023; 18(9): 100329. https://doi. org/10.1016/j.ijft.2023.100329
  • 10. Duriagina Z.A., Kulyk V.V., Filimonov O.S., Trostianchyn A.M., Sokulska N.B. The role of stress–strain state of gas turbine engine metal parts in predicting their safe life. Progress in Physics of Metals 2021; 22(4): 643–677. https://doi. org/10.15407/UFM.22.04.643
  • 11. Tatarenko V.A., Radchenko T.M., Nadutov V.M. Parameters of interatomic interaction in a substitutional alloy F.C.C.Ni-Fe according to experimental data about the magnetic characteristics and equilibrium values of intensity of a diffuse scattering of radiations. Metallofizikai Noveishie Tekhnologii 2003; 25(10): 1303–1319.
  • 12. Dobrotvorskiy S., Balog M., Basova Y., Dobrovolska L., Zinchenko A. Concept of the software for materials selection using. Net technologies. In: Proc. of Grabchenko’s International Conference on Advanced Manufacturing Processes. Inter Partner 2019, Odessa, Ukraine, 2019, 32–43. https://doi. org/10.1007/978-3-030-40724-7_
  • 13. Kusyi Y., Stupnytskyy V., Onysko O., Dragašius E., Baskutis S., Chatys R. Optimization synthesis of technological parameters during manufacturing of the parts. Eksploatacja i Niezawodność – Mainteance and Reliability. 2022; 24(4): 655–667. https:// doi.org/10.17531/ein.2022.4.6
  • 14. Frąckowiak A., Olejnik A., Wróblewska A., Ciałkowski M. Application of the protective coating for blade’s thermal protection. Energies 2021; 14(1): 50. https://doi.org/10.3390/en14010050
  • 15. Chang S.W., Wu P.-S., Wan T.-Y., Cai W.-L. A review of cooling studies on gas turbine rotor blades with rotation. Inventions 2023; 8(1): 21. https://doi. org/10.3390/inventions8010021
  • 16. Presby M.J., Stokes J.L., Harder B.J., Lee K.N., Hoffman L.C. High-temperature solid particle erosion of environmental and thermal barier coatings. Coatings 2023; 13(5): 902. https://doi. org/10.3390/coatings13050902
  • 17. Ropyak L., Shihab T., Velychkovych A., Bilinskyi V., Malinin V., Romaniv M. Optimization of plasma electrolytic oxidation technological parameters of deformed aluminum alloy D16T in flowing electrolyte. Ceramics 2023; 6(1): 146–167. https://doi. org/10.3390/ceramics6010010
  • 18. Li B., Fan X., Li D., Jiang P. Design of thermal barrier coatings thickness for gas turbine blade based on finite element analysis. Mathematical Problems in Engineering 2017; 2017: 2147830. https://doi. org/10.1155/2017/2147830
  • 19. Dutkiewicz M., Dalyak T., Shatskyi I., Venhrynyuk T., Velychkovych A. Stress analysis in damaged pipeline with composite coating. Applied Sciences 2021; 11(22): 10676. https://doi.org/10.3390/ app112210676
  • 20. Pashechko M.I., Montusiewicz J. Evaluation of the wear resistance of eutectic coatings of the Fe-Mn-C- B system alloyed by Si, Ni, and Cr using multi-criteria analysis. Materials Science 2012; 47(6): 813– 821. https://doi.org/10.1007/s11003-012-9460-7
  • 21. Ropyak L.Ya., Shatskyi I.P., Makoviichuk M.V. Influence of the oxide-layer thickness on the ceramic–aluminium coating resistance to indentation. Metallofiz. Noveishie Tekhnol. 2017; 39(4): 517– 524. https://doi.org/10.15407/mfint.39.04.0517
  • 22. Ivanov O., Prysyazhnyuk P., Lutsak D., Matviienkiv O., Aulin V. Improvement of abrasion resistance of production equipment wear parts by hardfacing with flux-cored wires containing boron carbide. Metal powder reaction mixtures. Management Systems in Production Engineering 2020; 28(3): 178. https://doi.org/10.2478/mspe-2020-0026
  • 23. Prysyazhnyuk P., Lutsak D., Shlapak L., Aulin V., Lutsak L., Borushchak L., Shihab T. Development of the composite material and coatings based on niobium carbide. Eastern-European Journal of Enterprise Technologies 2018; 6(12-96): 43–49. https:// doi.org/10.15587/1729-4061.2018.150807
  • 24. Bembenek M., Prysyazhnyuk P., Shihab T., Machnik R., Ivanov O., Ropyak L. Microstructure and wear characterization of the Fe-Mo-B-C—Based hardfacing alloys deposited by flux-cored arc welding. Materials 2022; 15(14): 5074. https://doi. org/10.3390/ma15145074
  • 25. Prysyazhnyuk P., Ivanov O., Matvienkiv O., Marynenko S., Korol O., Koval I. Impact and abrasion wear resistance of the hardfacings based on high-manganese steel reinforced with multicomponent carbides of Ti-Nb-Mo-V-C system. Procedia Struct. Integr. 2022; 36: 130–136. https://doi. org/10.1016/j.prostr.2022.01.014
  • 26. Walczak M. Surface characteristics and wear resistance of 316L stainless steel after different shot peening parameters. Advances in Science and Technology Research Journal 2023; 17(3): 124–132. https://doi.org/10.12913/22998624/165800
  • 27. Shatsky I.P. Bending of the plate weakened by the crack with contacting edges. Dopovidi Akademii Nauk Ukrainskoi RSR Seriya A – Fiziko- matematichni ta technichni nauki 1988; 7: 49–51.
  • 28. Young M.J., Sun C.T. Influence of crack closure on the stress intensity factor in bending plates – A classical plate solution. International Journal of Fracture 1992; 55: 81–93. https://doi.org/10.1007/ BF00018034
  • 29. Shatskii I.P. Model for contact of crack boundaries in a bending plate. Journal of Mathematical Sciences 2001; 103(3): 357–362. https://doi. org/10.1023/A:1011366312923
  • 30. Shatskii I.P. Contact of the edges of the slit in the plate in combined tension and bending. Materials Science 1989; 25(2): 160–165. https://doi. org/10.1007/BF00780501
  • 31. Shatskyi I.P., Perepichka V.V. Limiting state of a semi-infinite plate with edge crack in bending with tension. Materials Science 2004; 40(2); 240–246. https://doi.org/10.1007/s11003-005-0048-3
  • 32. Sulym H., Opanasovych V., Slobodian M., Bilash O. Combined bending with tension of isotropic plate with crack considering crack banks contact and plastic zones at its tops. Acta Mechanica et Automatica 2018; 12(2): 91–95. https://doi.org/10.2478/ ama-2018-0014
  • 33. Pryhorovska T., Ropyak L. Machining error in- flunce on stress state of conical thread joint details. In: Proc. of IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), Sozopol, Bulgaria 2019, 493–497. https://doi. org/10.1109/CAOL46282.2019.9019544
  • 34. Shatskyi I., Ropyak L., Velychkovych A. Model of contact interaction in threaded joint equipped with spring-loaded collet. Engineering Solid Mechanics 2020; 8(4): 301–312. https://doi.org/10.5267/j. esm.2020.4.002
  • 35. Shatskyi I P., Shopa V.M., Velychkovych A.S. Development of full-strength elastic element section with open shell. Strength of Materials 2021; 53(2): 277– 282. https://doi.org/10.1007/s11223-021-00286-y
  • 36. Bedzir A.A., Shatskii I.P., Shopa V.M. Nonideal contact in a composite shell structure with a deformable filler. Int. Appl. Mech. 1995; 31(5): 351–354. https://doi.org/10.1007/BF00846842
  • 37. Dutkiewicz M., Velychkovych A., Shatskyi I., Shopa V. Efficient model of the interaction of elastomeric filler with an open shell and a chrome-plated shaft in a dry friction damper. Materials 2022; 15(13): 4671. https://doi.org/10.3390/ma15134671
  • 38. Saakiyan L.S., Efremov A.P., Ropyak L.Ya., Gorbatskii A.V. A method of microelectrochemical investigations. Soviet materials science (English Translation of Fiziko-khimicheskaya mekhanika materialov, Academy of Sciences of the Ukrainian SSR) 1987; 23(3): 267–269. https://doi.org/10.1007/ BF00720884
  • 39. Saakiyan L.S., Efremov A.P., Ropyak L.Ya. Effect of stress on the microelectrochemical heterogeneity of steel. Protection of Metals (English translation of Zaschita Metallov) 1989; 25(2): 185–189.
  • 40. Ropyak L.Y., Makoviichuk M.V., Shatskyi I.P., Pritula I.M., Gryn L.O., Belyakovskyi V.O. Stressed state of laminated interference-absorption filter under local loading. Functional Materials 2020; 27(3): 638–642. https://doi.org/10.15407/fm27.03.638
  • 41. Shatskyi I., Vytvytskyi I., Senyushkovych M., Velychkovych A. Modelling and improvement of the design of hinged centralizer for casing. In: Proc. Of Innovative Manufacturing Engineering and Energy (IManEE 2019) – “50 Years of Higher Technical Education at the University of Pitesti” – The 23rd edition of IManEE 2019 International Conference 22–24 May 2019, Pitesti, Romania. IOP Conf. Ser. Mater. Sci. Eng. 2019; 564: 012073. https://doi. org/10.1088/1757-899X/564/1/012073
  • 42. Tatsiy R.M., Pazen O.Y., Vovk S.Y., Ropyak L.Y., Pryhorovska T.O. Numerical study on heat transfer in multilayered structures of main geometric forms made of different materials. Journal of the Serbian Society for Computational Mechanics 2019; 13(2): 36–55. https://doi.org/10.24874/JSSCM.2019.13.02.04
  • 43. Tatsii R.M., Stasyuk M.F., Pazen O.Y. Direct method of calculating nonstationary temperaturę fields in bodies of basic geometric shapes. Journal of Engineering Physics and Thermophysics 2021; 94(2): 298–310. https://doi.org/10.1007/ s10891-021-02302-z
  • 44. Bandura A.I., Skaskiv O.B. Analytic functions in the unit ball of bounded L-index: Asymptotic and local properties. Matematychni Studii 2017; 48(1): 37–74. https://doi.org/10.15330/ms.48.1.37-73
  • 45. Bandura A., Skaskiv O. Analog of Hayman’s theorem and its application to some system of linear partial differential equations. Journal of Mathematical Physics, Analysis, Geometry 2019; 15(2): 170–191. https://doi.org/10.15407/mag15.02.170
  • 46. Martsynkovskyy V., Tarelnyk V., Konoplianchenko I., Gaponova O., Dumanchuk M. Technology support for protecting contacting surfaces of half-coupling – Shaft press joints against fretting wear. In: Proc. of Advances in Design, Simulation and Manufacturing II. DSMIE 2019 (June 11–14, 2019, Lutsk, Ukraine). Lecture Notes in Mechanical Engineering. Springer, Cham, Switzerland 2020, 216–225. https://doi.org/10.1007/978-3-030-22365-6_22
  • 47. Hurey I., Hure, T., Lanets O., Dmyterko, P. The durability of the nanocrystalline hardened layer during the fretting wear. In: Proc. of Advances in Design, Simulation and Manufacturing IV. DSMIE 2021 (June 7–10, 2021, Lviv, Ukraine). Lecture Notes in Mechanical Engineering. Springer, Cham, Switzerland 2021, 23–32. https://doi. org/10.1007/978-3-030-77823-1_3
  • 48. Tsyganov V.V., Ivschenko L.I. The methodological principles of the engineering of tribocoupling details surface under multicomponent loading. In: Proc. of Materials Science and Technology 2018, MS and T 2018, Columbus 14 October 2018 through 18 October 2018, Columbus Convention Center, Columbus, Ohio, USA 2019, 578–584. https://doi. org/10.7449/2018/MST_2018_578_584
  • 49. Sereda B., Sheyko S., Belokon Y., Sereda D. The influence of modification on structure and properties of rapid steel. In: Proc. of Materials Science and Technology Conference and Exhibition 2011, Columbus, 16–20 October 2011, Association for Iron & Steel Technology, Columbus, Ohio, USA 2011; 1: 713–716.
  • 50. Ivshchenko L.I., Tsyganov V.V., Zakiev I.M. Features of the wear of tribojoints under three-dimensional loading. Journal of Friction and Wear 2011; 32(1): 8–16. https://doi.org/10.3103/S1068366611010065
  • 51. Tsyganov V., Ivschenko L., Byalik H., Mokhnach R., Sakhniuk N. Creation of wearproof eutecticum composition materials for the details of the high temperature dynamic systems. In: Proc. of Materials Science and Technology, Oregon Convention Center, Portland, Oregon, USA 2019, 450–456. https:// doi.org/10.7449/2019/MST_2019_450_456
  • 52. Tsyganov V.V., Sheyko S. Features of engineering the wear-resistant surface of parts with the multicomponent dynamic load. Wear 2022; 494–495: 204255. https://doi.org/10.1016/j. wear.2022.204255
  • 53. Tretyachenko G.N., Kravchuk L.V., Kuriat R.I., Voloshchenko A.P. Carrying capacity of gas turbine blades under non-stationary thermal and force effects. Kyiv. Scientific opinion, 1975.
  • 54. Duriagina Z.A., Tepla T.L., Kulyk V.V. Evaluation of di erences between Fe3O4 micro- and nanoparticles properties. Acta Physica Polonica A 2018; 133(4): 869–872. https://doi.org/10.12693/ APhysPolA.133.869
  • 55. Tsyganov V.V., Mokhnach R.E., Sheiko S.P. Increasing wear resistance of steel by optimizing structural state of surface layer. Steel in Translation 2021; 51(2): 144–147. https://doi.org/10.3103/ S096709122102011X
  • 56. Yushchenko K.А., Yarovytsyn O.V., Chervyakov M.O., Zviagintseva H.V., Volosatov I.R., Oliynyk Yu.V. Development of a set of requirements for methods for evaluating the performance of welded joints ‘base-overlay metal’ from nickel-based superalloys of ZhS6 and ZhS32 type, simulating the repairing of the aircraft gas turbine enginesblade edges under industrial conditions. Metallofiz. Noveishie Tekhnol. 2022; 44(12): 1679–1696. https://doi.org/10.15407/mfint.44.12.1679
  • 57. Gutakovskis V., Gudakovskis V., Blumbergs I., Sarma E. Usage of Cold Forcing Method for a Gas Turbine Engine of Supersonic Transport. Advances in Science and Technology Research Journal 2023; 17(1): 267–273. https://doi. org/10.12913/22998624/156985
  • 58. Kozakiewicz A., Kołodziejska A., Kieszek R. Application of laboratory tests in numerical ana-lysis for exhaust emissions in business jet engines. Advances in Science and Technology Research Journal 2023; 17(4): 21–35. https://doi. org/10.12913/22998624/167456
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-547c9adf-1bec-4c89-91ac-f97d28e57ce5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.