PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable Agriculture in Peru Based on Agrobiodiversity and Climate-Smart Agriculture–Evaluation of a Case Study with Small Farmers in an Andean Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The loss of biodiversity and the effects of climate change hurt agricultural production and food security in Peru and around the world. The family farming sector in Peru (97% of agricultural units–AU) faces numerous challenges when it comes to sustainably producing food. To sustain Peruvian agriculture in the face of climate change, climate-smart agricultural (CSA) practices and agrobiodiversity conservation are essential. This document characterizes the level of agrobiodiversity (index IDA) of family AUs in the Crisnejas basin and analyzes the impact of the elements that affect farmers’ decisions to apply multiple CSA measures. CSA adoption decisions were analyzed using an econometric analysis framework combining multivariate and ordered probit models for 340 family AUs. Results indicate that AUs with a lower agrobiodiversity index (IDA) have a higher monthly income (IDA=0.56, 312 USD, Pearson binary correlation, CI=-0.4107). The highest economic income AUs are located between 2,500 and 3,000 meters above sea level (352 USD, CI=-0.3551), have access to irrigation (365 USD, CI=-0.5225), and are also part of consolidated family farms (428 USD, CI=-0.2699). Based on the econometric results, farmers’ decisions to adopt CSA practices are influenced by altitude, tenure, age, cultivated area, level of agrobiodiversity, and access to water. A larger number of household members, a better educational level, and a greater distance to the local market increase the probability of intensifying the use of CSA practices in the lower, middle, and upper basins, respectively (significant coefficient estimates, p-value<0.05). Distance to the farms, cultivated area, and seed storage are other factors associated with the intensity of CSA use (p-value<0.05). According to the findings, agrobiodiversity must be increased in Peruvian agriculture to achieve a functional and balanced system from an economic, ecological, and sociocultural perspective, as well as carefully developing adaptation/mitigation strategies to address the impacts of climate change on Peruvian agriculture.
Rocznik
Strony
278--293
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Facultad de Economía y Planificación, Universidad Nacional Agraria la Molina, UNALM, La Molina, Lima, Peru
  • Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
  • Facultad de Economía y Planificación, Universidad Nacional Agraria la Molina, UNALM, La Molina, Lima, Peru
  • Facultad de Economía y Planificación, Universidad Nacional Agraria la Molina, UNALM, La Molina, Lima, Peru
  • Departamento de Suelos, Facultad de Agronomía, Universidad Nacional Agraria la Molina, UNALM, La Molina, Lima, Peru
Bibliografia
  • 1. Adams, W M., Aveling, R., Brockington, D., Dickson, B., Elliott, J., Hutton, J., Roe, D., Vira, B., Wolmer, W. 2004. Biodiversity conservation and the eradication of poverty. Science 306(5699), 11461149. https://doi.org/10.1126/science.1097920
  • 2. Adhikari, Y.P., Fischer, A., Fischer, H.S., Rokaya, M.B., Bhattarai, P., Gruppe, A. 2017. Diversity, composition and host-species relationships of epiphytic orchids and ferns in two forests in Nepal. Journal of Mountain Science,14(6), 1065–1075. https://doi.org/10.1007/S11629-016-4194-X
  • 3. Amadu, F.O., McNamara, P.E., Miller, D.C. 2020. Understanding the adoption of climate-smart agriculture: A farm-level typology with empirical evidence from southern Malawi. World Development, 126, 104692. https://doi.org/10.1016/j. worlddev.2019.104692
  • 4. Ardakani, Z., Bartolini, F., Brunori, G. 2019. Economic modeling of climate-smart agriculture in Iran. New Medit, 1, 29–40. https://doi.org/10.30682/nm1901c
  • 5. Aryal, J.P., Jat, M.L., Sapkota, T.B., Khatri-Chhetri, A., Kassie, M., Rahut, D.B., & Maharjan, S. 2018. Adoption of multiple climate-smart agricultural practices in the Gangetic plains of Bihar, India. International Journal of Climate Change Strategies and Management, 10(3), 407–427. https://doi. org/10.1108/IJCCSM-02-2017-0025
  • 6. Aryal, J.P., Rahut, D.B., Jat, M. L., Maharjan, S., Erenstein, O. 2018. Factors determining the adoption of laser land leveling in the irrigated rice–wheat system in Haryana, India. Journal of Crop Improvement, 32(4), 477–492. https://doi.org/10.1080/1542 7528.2018.1457584
  • 7. Aryal, J.P., Rahut, D.B., Maharjan, S., Erenstein, O. 2018. Factors affecting the adoption of multiple climate-smart agricultural practices in the Indo-Gangetic Plains of India. Natural Resources Forum, 42(3), 141–158. https://doi.org/10.1111/1477-8947.12152
  • 8. Aryal, J.P., Sapkota, T.B., Jat, M.L., Bishnoi, D.K. 2015. On-farm economic and environmental impact of zero-tillage wheat: A case of North-West India. Experimental Agriculture, 51(1), 1–16. https://doi. org/10.1017/S001447971400012X
  • 9. Asencios, R., Cornejo, G., Cosavalente, I., Espejo, N., López, B. 2020. Actividad económica: Febrero 2020. Resumen. https://www.bcrp.gob.pe/docs/ Publicaciones/Notas-Estudios/2020/nota-de-estudios-28-2020.pdf
  • 10. Asfaw, S., Coromaldi, M., Lipper, L. 2015. Adaptation to climate risk and food security: Evidence from smallholder farmers in Ethiopia. FAO, 1–50. file:/// Articles/2015/Asfaw/FAO 2015 Asfaw-2.pdf
  • 11. Asseffa, W. 2016. Agrobiodiversity conservation practices and gender consideration in Sinana district, southeastern Ethiopia 21(9), https://doi. org/10.1044/leader.ppl.21092016.20
  • 12. Bedeke, S., Vanhove, W., Gezahegn, M., Natarajan, K., Van Damme, P. 2019. Adoption of climate change adaptation strategies by maize-dependent smallholders in Ethiopia. NJAS – Wageningen Journal of Life Sciences, 88, 96–104. https://doi.org/10.1016/j.njas.2018.09.001
  • 13. Bell, A.R., Cheek, J.Z., Mataya, F., Ward, P.S. 2018. Do as they did: Peer effects explain adoption of conservation agriculture in Malawi. Water, 10(51), 16. https://doi.org/10.3390/w10010051
  • 14. Branca, G., McCarthy, N., Lipper, L., Jolejole, C. 2011. Climate-smart agriculture: a synthesis of empirical evidence of food security and mitigation benefits from improved cropland management. Mitigation of Climate Change in Agriculture Series (FAO).
  • 15. CENAGRO, 2012. Resultados Definitivos: IV Censo Nacional Agropecuario – 2012 SINIA Sistema Nacional de Información Ambiental. https://sinia. minam.gob.pe/documentos/resultados-definitivos-iv-censo-nacional-agropecuario-2012
  • 16. Chandra, A. 2017. Climate-smart agriculture in practice: insights from smallholder farmers, timorleste and the Philippines, Southeast Asia. Academy of Management, 2002(1) https://doi.org/10.5465/ APBPP.2002.7517527
  • 17. Di Falco, S., Zoupanidou, E. 2017. Soil fertility, crop biodiversity, and farmers’ revenues: Evidence from Italy. Ambio, 46(2), 162–172. https://doi. org/10.1007/s13280-016-0812-7
  • 18. Enahoro, D., Lannerstad, M., Pfeifer, C., DominguezSalas, P. 2018. Contributions of livestock-derived foods to nutrient supply under changing demand in low and middle-income countries. Global Food Security, 19, 1–10. https://doi.org/10.1016/j.gfs.2018.08.002
  • 19. FAO. 2007. La situación de los recursos zoogeneticos mundiales para la alimentacion y la agricultura – resumen, editado por Dafydd Pilling and Barbara Rischkowsky.
  • 20. FAO. 2010. “Climate-smart” agriculture. Policies, Practices and Financing for Food Security, Adaptation and Mitigation. 46(11), 49. https://doi. org/10.1111/j.1467-825x.2009.02642.x
  • 21. FAO. 2016. The State of Food and Agriculture. Food and Agriculture Organization of the United Nations. http://www.fao.org/publications/sofa/2016/en/
  • 22. FAO. 2019. El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos.
  • 23. FAO. 2020. FAOSTAT. http://www.fao.org/faostat/ es/#data/GT
  • 24. Fernández, F.J., Blanco, M., Ponce, R.D., Vásquezlavín, F., & Roco, L. 2017. Implications of climate change for semi-arid dualistic agriculture: a case study in Central Chile. Regional Environmental Change, 1–26. https://doi.org/10.1007/s10113-018-1380-0
  • 25. Frison, E.A., Cherfas, J., Hodgkin, T. 2011. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability, 3(1), 238–253. https://doi.org/10.3390/ su3010238
  • 26. Ghimire, R., Khatri-Chhetri, A., Chhetri, N. 2022. Institutional Innovations for Climate Smart Agriculture: Assessment of Climate-Smart Village Approach in Nepal. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.734319
  • 27. González, Y., Leyva, A., Pino, O., Mercadet, A., Antoniolli, Z., Arébalo, R., Barossuol, L., Lores, A., Gómez, Y. (2018). El funcionamiento de un agroecosistema premontañoso y su orientación prospectiva hacia la sostenibilidad: rol de la agrobiodiversidad. Cultivos Tropicales, 39(1), 21–34.
  • 28. Haq, S., Boz, I., Shahbaz, P. 2021. Adoption of climatesmart agriculture practices and differentiated nutritional outcome among rural households: a case of Punjab province, Pakistan. Food Security, 13(4), 913931. https://doi.org/10.1007/s12571-021-01161-z
  • 29. Hrabanski, M., Le Coq, J.F. 2022. Climatisation of agricultural issues in the international agenda through three competing epistemic communities: Climatesmart agriculture, agroecology, and nature-based solutions. Environmental Science and Policy, 127, 311320. https://doi.org/10.1016/j.envsci.2021.10.022
  • 30. Imran, M.A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., & Ma, C. 2018. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability. 10(6). https://doi.org/10.3390/su10062101
  • 31. INEI. 2018. Características de la Población. In Perú: Perfil Sociodemográfico, 2017.
  • 32. Körner, C. 2007. The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
  • 33. Kpadonou, R.A.B., Owiyo, T., Barbier, B., Denton, F., Rutabingwa, F., Kiema, A. 2017. Advancing climate-smart-agriculture in developing drylands: Joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land Use Policy, 61, 196–207. https:// doi.org/10.1016/j.landusepol.2016.10.050
  • 34. Leyva, Á., Lores, A. 2018. Assessing agroecosystem sustainability in Cuba: A new agrobiodiversity index. Elementa, 6(1). https://doi.org/10.1525/ elementa.336
  • 35. Leyva, A., Lores, A. 2012. Nuevos índices para evaluar la agrobiodiversidad. Agroecología, 7(1), 109–115.
  • 36. Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G. 2018. Climate Smart Agriculture Building Resilience to Climate Change. In Natural Resource Management and Policy. https://doi. org/10.1007/978-3-319-61194-5
  • 37. Maguza-Tembo, F., Mangison, J., Edris, A.K., Kenamu, E. 2017. Determinants of adoption of multiple climate change adaptation strategies in Southern Malawi: An ordered probit analysis. Journal of Development and Agricultural Economics, 9(1), 1–7. https://doi.org/10.5897/JDAE2016-0753
  • 38. Makate, C., Wang, R., Makate, M., Mango, N. 2016. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change. SpringerPlus, 5(1135). https:// doi.org/10.1186/s40064-016-2802-4
  • 39. Miller, D.C., Muñoz-Mora, J.C., and Christiaensen, L. 2017. Prevalence, economic contribution and determinants of trees on farms across Sub-Saharan Africa. Forest Policy and Economics, 84, 47–61. https://doi.org/10.1016/j.forpol.2016.12.005
  • 40. Minam A.. 2016. Evaluación de Recursos Hídricos de doce cuencas hidrográficas del Perú 7(11). https://doi.org/10.1017/CBO9781107415324.004
  • 41. Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T., Woznicki, S.A. 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163. https://doi. org/10.1016/j.crm.2017.02.001
  • 42. Teklewold, H., Gebrehiwot, T., Bezabih, M. 2019. Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia. World Development, 122, 3853. https://doi.org/10.1016/j.worlddev.2019.05.010
  • 43. Teklewold, H., Kassie, M., Shiferaw, B., Köhlin, G. 2013. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. In Ecological Economics, 93, 8593. https://doi.org/10.1016/j.ecolecon.2013.05.002
  • 44. Teklewold, H., Mekonnen, A., Kohlin, G. 2019. Climate change adaptation: a study of multiple climate-smart practices in the Nile Basin of Ethiopia. Climate and Development, 11(2), 180–192. https:// doi.org/10.1080/17565529.2018.1442801
  • 45. Timsina, B., Rokaya, M.B., Münzbergová, Z., Kindlmann, P., Shrestha, B., Bhattarai, B., Raskoti, B. B. 2016. Diversity, distribution and host-species associations of epiphytic orchids in Nepal. Biodiversity and Conservation, 25(13), 2803–2819. https://doi.org/10.1007/S10531-016-1205–8
  • 46. Warren, R., VanDerWal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., Osborn, T.J., Jarvis, A., Shoo, L.P., Williams, S.E., and Lowe, J. 2013. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678. https://doi.org/10.1038/nclimate1887
  • 47. Wekesah, F.M., Mutua, E.N., and Izugbara, C.O. 2019. Gender and conservation agriculture in subSaharan Africa: A systematic review. International Journal of Agricultural Sustainability, 17(1), 78–91. https://doi.org/10.1080/14735903.2019.1567245
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54738d7b-9086-4b8b-b802-335a549bd875
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.