PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Machining Settings and Tool Geometry on Surface Quality After Machining of Al/CFRP Sandwich Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the effect of cutting parameters and tool geometry on the surface quality after machining of an Al/CFRP (aluminium alloy/ Carbon Fibre Reinforced Plastics) sandwich structure. A two-layer sandwich structure made of an EN AW 2024 aluminium alloy and Carbon Fibre Reinforced Plastics (CFRP) was examined. The experiment used the process of peripheral milling. The experiment investigated the effects of cutting speed (vc), feed per blade (fz) and helix angle (λs) on surface quality as defined by differences in the height of materials. It was also analysed how the machining conditions described above affected the values of cutting force components. In the experimental stage of the study, uncoated, double-bit carbide mill cutters with working diameter Dc = 12mm and a variable helix angle (λs = 20˚, λs = 35˚, λs = 45˚) were used. The results have shown that cutting parameters and tool geometry do affect the surface quality and cutting forces after milling of the sandwich structure. The lowest material height difference was achieved when machining with the helix angle λs = 45˚, cutting speed vc = 300m/min and feed per blade fz = 0.08mm/blade. The highest material height difference occurred after machining under the following conditions: vc = 300m/min, fz = 0.08mm/min, λs = 20˚. The minimum cutting force value was obtained for cutting parameters: vc = 80m/min, fz = 0.08mm/blade during milling with the helix angle λs = 45˚. The maximum cutting force was recorded during machining with the helix angle λs = 20˚, cutting speed vc = 400m/min and feed per blade fz = 0.08 mm/blade.
Twórcy
  • Department of Mechanical Engineering, Lublin University of Technology, 20-388 Lublin, Poland
  • Department of Mechanical Engineering, Lublin University of Technology, 20-388 Lublin, Poland
Bibliografia
  • 1. Alkhoder M., Iyer S., Shi W., Venkalesh T.A. Low frequency acoustic characteristics of periodic honeycomb cellular cores: The effect of relative density and strain fields. Composite Structures. 2015; 133: 77–84.
  • 2. Arbaoui J., Schmitt Y., Pierrot J.-L., Royer F.-X. Numerical simulation and experimental bending behaviour of multi–layer sandwich structures. Journal of Theoretical and Applied Mechanics. 2014; 52: 431–442.
  • 3. Chen A., Norris T.G., Hopkins P.M., Yossef M.Y. Experimental investigation and finite element analysis of flexural behaviour of insulated concrete sandwich panels with FRP plate shear connectors. Engineering Structures. 2015; 98: 95–108.
  • 4. Bivolaru C., Opra C., Murar D. Research regarding modeling machinability by milling of polymeric composite sandwich products. 3rd International Conference Advanced Composite Materials Engineering COMAT, Brasov, Romania 2010.
  • 5. Mohamed S., Gauthier S., Chatelain J.F. Analysis of trajectory deviation during high speed robotic trimming of carbon–fiber reinforced polymers. Robotics and Computer Integrated Manufacturing. 2014; 30: 546–555.
  • 6. Ciecieląg K. Effect of Composite Material Fixing on Hole Accuracy and Defects During Drilling. Advances in Science and Technology Research Journal. 2021; 15: 54–65.
  • 7. Ratwani M.M. Composite Materials and Sandwich Structures – A Primer. USA, 2010.
  • 8. Denkena B., Grove T., Hasselberg E. Workpiece Shape Deviations in Face Milling of Hybrid Structures. Materials Science Forum. 2015; 825–826: 336–343.
  • 9. Feito N., Diaz-Alvarez J., Lopez-Puente J., Miguelez M.H. Numerical analysis of the influence of tool wear and special cutting geometry when drilling woven CFRPs. Composite Structures. 2016; 138: 258–294.
  • 10. Miturska-Barańska I., Józwik J., Bere P. Effect of Face Milling Parameters of Carbon Fiber Reinforced Plastics Composites on Surface Properties. Advances in Science and Technology Research Journal. 2022; 16: 26–38.
  • 11. Vobrouček J. The influence of milling tool geometry on the quality of the machined surface. Procedia Engineering. 2015; 100: 1556–1561.
  • 12. Geier N., Pereszlai C. Analysis of Characteristics of Surface Roughness of Machined CFRP Composite. Periodica Polytechnica Mechanica Engineering. 2020; 64: 67–80.
  • 13. Shahabaz S.M., Shetty N., Shetty S.D., Sharma S.S. Surface roughness analysis in the drilling of carbon fiber/epoxy composite laminates using hybrid Taguchi – Response experimental design. Materials Research Express. 2020; 7.
  • 14. Mousa M.A., Uddin N. Debonding of composites structural insulated sandwich panels. Journal of Reinforced Plastics and Composites. 2010; 28: 3380–3391.
  • 15. Yalkin H.E., Icten B.M., Alpyildiz T. Enhanced mechanical performance of foam core sandwich composites with through the thickness reinforced core. Composites Part B. 2015; 79: 383–391.
  • 16. Denkena B.; Köhler J.; Hasselberg E. Modeling of workpiece shape deviations in face milling of parallel workpiece compounds. Procedia CIRP. 2013; 8: 176–181.
  • 17. Hosokawa A., Hirose N., Ueda T., Furumoto T. High–quality machining of CFRP with high helix end mill. CIRP Annals. 2014; 63: 89–92.
  • 18. Shahrajabian H., Farahnakian M. Multi-constrained optimization in ball-end machining of carbon fiberreinforced epoxy composites by PS. Cogent Engineering. 2015; 2: 993157.
  • 19. Liu G., Chen H., Huang Z., Gao F., Chen T. Surface Quality of Staggered PCD End Mill in Milling of Carbon Fiber Reinforced Plastics. Applied Sciences. 2017; 7: 199.
  • 20. Ghidossi P., El Mansori M., Pierron F. Edge machining effects on the failure of polymer matrix composite coupons. Composites Part A – Applied Science and Manufacturing. 2004; 35: 989–999.
  • 21. Chibane H., Morandeau A., Serra R., Bouchou A., Leroy R. Optimal milling conditions for carbon/epoxy composite material using damage and vibration analysis. The International Journal of Advanced Manufacturing Technology. 2013; 68: 1111–1121.
  • 22. Uhlmann E., Richarz S., Sammler F., Hufschmied R. High Speed Cutting of Carbon Fibre Reinforced Plastics. Procedia Manufacturing. 2016; 6: 113–123.
  • 23. Qi Z., Zhang K., Cheng H., Wang D., Meng Q. Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP. The International Journal of Advanced Manufacturing Technology. 2015; 79: 1209–1219.
  • 24. Sorrentino L., Turchetta S. Cutting forces in milling of carbon fibre reinforced plastics. International Journal of Manufacturing Engineering. 2014; 2014: 1–8.
  • 25. Chen L., Zhang K., Cheng H., Qi Z., Meng Q. A cutting force predicting model in orthogonal machining of unidirectional CFRP for entire range of fibre orientation. The International Journal of Advanced Manufacturing Technology. 2017; 89: 833–846.
  • 26. Ciecieląg K., Kęcik K., Zaleski K. Defects detection from time series of cutting force in composite milling process by recurrence analysis. Journal of Reinforced Plastics and Composites. 2020; 39: 890–901.
  • 27. DIN EN 573-3 Aluminium and aluminium alloys – Chemical composition and form of wrought products – Part 3: Chemical composition and form of products. Berlin, Germany 2019.
  • 28. EN 485-2:2016 - Aluminium and aluminium alloys – Sheet, strip and plate – Part 2: Mechanical properties. London, UK 2016.
  • 29. DIN ISO 527: Kunststoffe – Bestimmung der Zugeigenschaften – Teil 1: Allgemeine Grundsätze. Berlin, Germany, 2012.
  • 30. Hoffman Group Perschman: Machining and clamping. Catalogue 52, 2021/2022.
  • 31. Zaleski K., Pałka T. Wpływ geometrii ostrza na siły skrawania podczas frezowania stopów aluminium. Mechanik. 2014; 8–9: 639–646.
  • 32. Burek J., Żyłka Ł., Płodzień M., Sułkowicz P., Buk J. The effect of the cutting edge helix angle of the cutter on the process of chips removing from the cutting zone. Mechanik. 2007; 11: 962–964.
  • 33. Marcos M., Gomez-Lopez A.J., Batista Ponce M., Salguero A.J. Rough-ness based study of milled composite surfaces. Annals and Proceedings of International. 2011; 22: 153–154.
  • 34. Doluk E., Rudawska A., Kuczmaszewski J., Miturska-Barańska I. Surface Roughness after Milling of the Al/CFRP Stacks with a Diamond Tool. Materials. 2021; 14.
  • 35. Azmi A.J., Lin R.J.T., Bhattacharyya D. Machinability study of glass fibre-reinforces polymer composites during end milling. The International Journal of Advanced Manufacturing Technology. 2013; 64: 247–26.
  • 36. Boudelier A., Ritou M., Garner S., Furet B. Optimization of proces parameters in CFRP machining with diamond abrasive cutters. Advanced Materials Research. 2011; 223: 774–784.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-546cb2f8-29ec-4d18-8925-fc20592a1909
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.