Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zastosowanie teorii zbiorów rozmytych w ocenie ryzyka podczas budowy
Języki publikacji
Abstrakty
Traditional risk modeling techniques, such as statistical and probabilistic methods, which form the basis of risk estimation and analysis, are not always economically or socially effective tools in construction. This is due, among other things, to the discrepancy between the planning period of a project and its implementation and sustainability. Static or dynamic methods of measuring the effectiveness of projects are commonly used, as well as operational methods to solve problems in specific decision-making situations. The inclusion of subjectivity and the lack of complete and precise information severely limits, and sometimes even prevents the use of traditional methods. Applying fuzzy set theory to model complex issues such as risk seems a desirable and justifiable measure in such a case. The application of fuzzy sets in construction is not a new issue. However, most research studies on the use of fuzzy systems in the construction industry have proved to be either too simplistic or too detailed, therefore fuzzy risk assessment matrices have been proposed. The proposed alternative risk assessment methods are based on fuzzy set theory while considering standard recommendations. The paper discusses basic information on design strategies for building structures taking into account standard recommendations for modeling and risk assessment in construction. An example illustrating the application of the proposed qualitative and quantitative risk estimation methodology to a bridge structure is also included.
Zastosowanie tradycyjnych technik modelowania ryzyka, takich jak metody statystyczne i probabilistyczne, które stanowią podstawę szacowania i analizy ryzyka nie zawsze są narzędziami efektywnymi ekonomicznie, czy społecznie w budownictwie. Wynika to m.in. z rozbieżności pomiędzy okresem planowania przedsięwzięcia a jego realizacją i trwałością. Powszechnie stosowane są statyczne czy dynamiczne metody pomiaru efektywności przedsięwzięć, a także metody operacyjne, które umożliwiają rozwiązanie problemów w konkretnych sytuacjach decyzyjnych. Uwzględnienie subiektywności oraz brak pełnych i precyzyjnych informacji poważnie ogranicza, a czasami wręcz uniemożliwia zastosowanie tradycyjnych metod. W takim przypadku zastosowanie teorii zbiorów rozmytych, w celu modelowania złożonych zagadnień, takich jak ryzyko wydaje się działaniem pożądanym i uzasadnionym. Zastosowanie zbiorów rozmytych w budownictwie nie jest zagadnieniem nowym. Jednak, większość badań naukowych dotyczących wykorzystania logiki rozmytej w branży budowlanej okazała się albo zbyt uproszczona, albo zbyt szczegółowa, dlatego zaproponowano rozmyte matryce oceny ryzyka. Proponowane alternatywne metody oceny ryzyka oparte są na teorii zbiorów rozmytych przy uwzględnieniu zaleceń normowych. W artykule omówiono także podstawowe informacje dotyczące strategii projektowania konstrukcji budowlanych z uwzględnieniem normowych zaleceń modelowania i oceny ryzyka w budownictwie. Zamieszczono również przykład ilustrujący zastosowanie proponowanej metodologii szacowania jakościowego i ilościowego ryzyka w odniesieniu do obiektu mostowego.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
451--471
Opis fizyczny
Bibliogr. 52 poz., il., tab.
Twórcy
autor
- Military University of Technology, Faculty of Civil Engineering and Geodesy, Warsaw, Poland
autor
- University of Defence, Brno, Czech Republic
autor
- University of Defence, Brno, Czech Republic
autor
- Universiapolis, Technical University of Agadir, Technopole d’Agadir, Agadir, Morocco
autor
- Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Rzeszow, Poland
Bibliografia
- [1] D.F. Cooper, D.H. MacDonald, and C.B. Chapman, “Risk analysis of a construction cost estimate”, International Journal of Project Management, vol. 3, no. 3, pp. 141-149, 1985, doi: 10.1016/0263-7863(85)90065-1.
- [2] K.R. Molenaar, “Programmatic Cost Risk Analysis for Highway Megaprojects”, Journal of Construction Engineering and Management, vol. 131, no. 3, pp. 343-353, doi: 10.1061/(ASCE)0733-9364(2005)131:3(343).
- [3] S. French and D. Ros Insua, Statistical decision theory. Hoboken, NJ: Wiley, 2000.
- [4] L.A. Cox, “Statistical Risk Modeling”, in: Risk Analysis Foundations, Models, and Methods. International Series in Operations Research & Management Science, vol. 45. Boston, MA: Springer, 2002, pp. 133-215 doi: 10.1007/978-1-4615-0847-2_3.
- [5] T. Bedford and R. Cooke, Probabilistic Risk Analysis: Foundations and Methods. Cambridge University Press, 2001.
- [6] X. Wang and J. Huang, “Risk Analysis of Construction Schedule Based on Monte Carlo Simulation”, in Proceedings of International Symposium on Computer Network and Multimedia Technology. Wuhan, China, 2009, doi: 10.1109/CNMT.2009.5374816.
- [7] J. Nadaf, M. Nadaf, B. Jamadar, and K.P. Thejaswi, “Qualitative Risk Analysis for Construction Projects”, International Research Journal of Engineering and Technology, IRJET, vol. 5, no. 6, 2018.
- [8] A. Hanea, M. McBride, M. Burgman, and B. Wintle, “The value of discussion and performance weights in aggregated expert judgements”, Risk Analysis, vol. 38, no. 9, pp. 1781-1794, 2018, doi: 10.1111/risa.12992.
- [9] A. Hanea, G. Nane, T. Bedford, and S. French, Expert Judgment in Risk and Decision Analysis. Cham: Springer, 2021.
- [10] A. Hanea and G. Nane, “Editorial: Multivariate Probabilistic Modelling for Risk and Decision Analysis”, Frontiers in Applied Mathematics and Statistics, vol. 8, art. no. 829729, 2022, doi: 10.3389/fams.2022.829729.
- [11] M. Beynon, B. Curry, and P. Morgan, “The Dempster-Shafer theory of evidence: an alternative approach to multi-criteria decision modelling”, Omega, vol. 28 no. 1, pp. 37-50, 2000, doi: 10.1016/S0305-0483(99)00033-X.
- [12] A. Leśniak, D. Kubek, E. Plebankiewicz, K. Zima, and S. Belniak, “Fuzzy AHP application for supporting contractors’ bidding decision”, Symmetry, vol. 10, no. 11, 2018, doi: 10.3390/sym10110642.
- [13] I. Skrzypczak, W. Kokoszka, J. Zięba, A. Leśniak, D. Bajno, and L. Bednarz, “A proposal of a method for ready-mixed concrete quality assessment based on statistical-fuzzy approach”, Materials, vol. 13, no. 24, art. no. 5674, 2020, doi: 10.3390/ma13245674.
- [14] A. Leśniak, “Bid assessment with the use of fuzzy sets theory”, in AIP Conference Proceedings, vol. 1648, no. 1, art. no. 600006. AIP Publishing LLC., 2015, doi: 10.1063/1.4912838.
- [15] J. Konior, “Technical assessment of old buildings by fuzzy approach”, Archives of Civil Engineering, vol. 65, no. 1, pp. 129-142, 2019, doi: 10.2478/ace-2019-0009.
- [16] E. Plebankiewicz and P. Karcińska, “Creating a Construction Schedule Specyfing Fuzzy Norms and the Number of Workers”, Archives of Civil Engineering, vol. 62, no. 3, pp. 149-164, 2016, doi: 10.1515/ace-2015-0089.
- [17] E. Plebankiewicz, K. Zima, and D. Wieczorek, “Life cycle cost modelling of buildings with consideration of the risk”, Archives of Civil Engineering, vol. 62, no. 2, pp. 149-166, 2016, doi: 10.1515/ace-2015-0071.
- [18] S. Woliński, “Multi-faced assessment of structural safety”, Archives of Civil Engineering, vol. 67, no. 2, pp. 133-154, 2021, doi: 10.24425/ace.2021.137159.
- [19] J. Zeng, M. An, A.H.C. Chan, and Y. Lin, “A methodology for assessing risks in the construction process”, in Proceedings of 20th Annual ARCOM Conference, 1-3 September 2004, Heriot Watt University. Association of Researchers in Construction Management, 2004, vol. 2, pp. 1165-1174.
- [20] S. Woliński, “Ryzyko w projektowaniu konstrukcji z betonu”, Zeszyty Naukowe Politechniki Gdańskiej, vol. 602, no. 59, pp. 55-61, 2000.
- [21] S. Woliński, “Risk reliability-based design”, presented at 11th International Conference on Metal Structures, Rzeszów, Polska, 2006.
- [22] G. Harding and J. Carpenter, “Disproportional collapse of Class 3 buildings: the use of risk assessment”, The Structural Engineer, vol. 87, no. 15, 2009.
- [23] T. Vrouwenvelder, R. Lovegrove, M. Holicky, P. Tanner, and G. Canisius, Risk Assessment and Risk Communication in Civil Engineering. CIB Report: Publication 259. Rotterdam: CIB General Secretariat, 2001.
- [24] H. Zhi, “Risk management for overseas construction”, International Journal of Project Management, vol. 13, no. 4, pp. 231-237, 1995.
- [25] P. Thompson and J. Perry, Engineering construction risks: A guide to project risk analysis and risk management. London: Thomas Telford, 1992.
- [26] R.D. Steenbergen and A. Vrouvenvelder, “Safety philosophy for existing structures and partial factors for traffic loads on bridges”, Heron, vol. 55, no. 2, pp. 123-140, 2010.
- [27] EN 1991-1-7:2008 Eurocode 1 – Actions on structures – Part 1-7: General actions – Accidental actions. European Committee for Standardisation, 2008.
- [28] ISO 13824:2009 General principles on risk assessment of systems involving structures. ISO, 2009.
- [29] ISO 2394:2015 General principles on reliability for structures. ISO, 2015.
- [30] JCSS, Background Documents on Risk Assessment in Engineering, Document no. 1, “Theoretical Framework for Risk Assessment and Evaluation”. [Online]. Available: https://www.jcsslc.org/publications/raie/03_risk_backgrounddoc_theoretical_framework_for_risk_assessment_and_evaluation.pdf. [Accessed: 10. Jan. 2023].
- [31] S. Woliński, “Conformity control of concrete strength based on the risk assessment”, Zeszyty Naukowe Politechniki Reszowskiej, vol. 265, no. 53, pp. 163-169, 2009.
- [32] EN 1990:2002 Eurocode – Basis of structural design. European Committee for Standardisation, 2002.
- [33] EN 1991-1-1 Eurocode 1: Actions on structures – Part 1-1: General actions – Densities, self-weight, imposed loads for buildings. European Committee for Standardisation, 2002.
- [34] J.A.J. Huber, M. Ekevad, U.A. Girhammar, and S. Berg, “Structural robustness and timber buildings – a review”, Wood Material Science & Engineering, vol. 14, no. 2, 2019, doi: 10.1080/17480272.2018.1446052.
- [35] Arup, Review of International Research on Structural Robustness and Disproportionate Collapse. London, 2011.
- [36] U. Starossek and M. Haberland, “Disproportionate Collapse: Terminology and Procedures”, Journal of Performance of Constructed Facilities, vol. 24, no. 6, pp. 519-258, 2010, doi: 10.1061/(ASCE)CF.1943-5509.0000138.
- [37] EN 1993-1-1:2005 Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings. European Committee for Standardisation, 2005.
- [38] EN 1994-1-1: 2004 Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings. European Committee for Standardisation, 2004.
- [39] CSA, Risk Analysis Requirements and Guidelines. Canadian Standards Association, Department for Communities and Local Government, 1991.
- [40] I. Bélyácz and K. Daubner, “Uncertainty of risk and increasing risk of uncertainty in business decisions”, Economy and Finance, vol. 8, no. 3, 2021, doi: 10.33908/EF.2021.3.2.
- [41] K.F. Park and Z. Shapira, “Risk and Uncertainty”, in The Palgrave Encyclopedia of Strategic Management, M. Augier and D. Teece, Eds. London: Palgrave Macmillan, 2017, doi: 10.1057/978-1-349-94848-2_250-1.
- [42] B. Tchórzewska-Cieślak, „Rozmyty model ryzyka awarii sieci wodociągowej”, Ochrona Środowiska, vol. 33, no. 1, pp. 35-40, 2011.
- [43] I. Skrzypczak, Analiza kryteriów oceny jakości betonu oraz ich wpływu na ryzyko producenta i odbiorcy. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej, 2013.
- [44] M. Holicky, “Risk assessment in advanced engineering design”, Acta Polytechnica, vol. 43, no. 3, pp. 10-16, 2003, doi: 10.14311/432.
- [45] M.H. Faber, “Framework for risk assessment of structural systems”, in Proceedings of Workshop COST C26: Urban habitat constructions under catastrophic events. Prague, 2007, pp. 359-367.
- [46] A.S. Nowak, “Analiza ryzyka i ocena niezawodności konstrukcji w praktyce budowlanej”, in Proceedings of Awarie Budowlane 2007. Międzyzdroje, 2007, pp. 123-130.
- [47] J. Murzewski, Niezawodność konstrukcji inżynierskich. Warszawa: Arkady, 1989.
- [48] G.M. Winch, Managing Construction Projects: An Information Processing Approach. United Kingdom: Oxford Blackwell Publishing, 2002.
- [49] V. Carr and J.H.M. Tah, “A fuzzy approach to construction project risk assessment and analysis: construction project risk management system”, Advances in Engineering Software, vol. 32, no. 10-11, pp. 847-857, 2001, doi: 10.1016/S0965-9978(01)00036-9.
- [50] E. Cox and M. O’Hagan, The fuzzy systems handbook. New York: Morgan Kaufmann Books – Elsevier, 1999.
- [51] H.X. Li and C.V. Yen, Fuzzy sets and fuzzy decisions-making. New York, USA: CRC Press, 1995.
- [52] B. Moller and M. Beer, Fuzzy Randomness: Uncertainty in Civil Engineering and computational mechanics. Berlin: Springer-Verlag, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-546c2904-55e4-4815-8ed6-1648fd22a277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.