PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the parameters of local power system devices with solar power plants and energy storage facilities and determination of operating modes during various periods of power outages

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of renewable energy sources (RES) and energy storage technologies is a key element of the transformation of modern power systems. The growing importance of solar energy, as one of the cleanest and most accessible energy sources, requires the optimization of its use in local power systems. This study analyzes the parameters of local power system (LES) devices with solar power plants and energy storage devices and determines their operating modes during different periods of power outages. As part of the research, an analysis of the reliability of electricity supply to LES recipients were carried out using the REopt platform for 4 different dates – December 22, June 22, March 22 and September 22. In the second step, the solar energy system modes were analyzed using the System Advisor Model (SAM) software. The analysis showed that the orientation of the module subassemblies with deviations of ±45° from the south direction allows for higher power output in the morning and evening hours. It was also shown that the arrangement of the modules in two subassemblies allows for reducing the power cut-off by the inverters at noon, so with one module arrangement, the cut-off value is 1.743%, and with two subassemblies – 0.339%.
Twórcy
  • Department of Electrical Power Engineering, Al Balqa Applied University, 19117, Al Salt, Jordan
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department Electrical and Electronics Engineering, Al Balqa Applied University, 19117 Al Salt, Jordan
  • Department Electrical and Electronics Engineering, Al Balqa Applied University, 19117 Al Salt, Jordan
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Renewable Energy Sources Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Electricity Supply and Energy Management, State Biotechnological University, 61052 Kharkiv, Ukraine
  • Department of Electricity Supply and Energy Management, State Biotechnological University, 61052 Kharkiv, Ukraine
  • Department of Electricity Supply and Energy Management, State Biotechnological University, 61052 Kharkiv, Ukraine
autor
  • Cyclone Manufacturing Inc, Mississauga, Ontario, Canada
Bibliografia
  • 1. The Ministry of Energy estimates the loss of TPP capacity at 78%, nuclear generation at 44%. Ukrainian energy industry. Accessed online: http://surl.li/sutbyg (November 2024).
  • 2. Buslavets O., Lezhniuk P. Renewable energy in the modern energy balance of Ukraine. Accessed online: http://surl.li/hvxuut (September 2024).
  • 3. Miroshnyk O., Moroz O., Shchur T., Chepizhnyi A., Qawaqzeh M., Kocira S. Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies. 2023, 16(6), 2638. https://doi.org/10.3390/en16062638.
  • 4. Kostenko G. and Zgurovets O. Current state and prospects for development of renewable distributed generation in Ukraine. System Research in Energy, 2023, 2(73), 4–17. https://doi.org/10.15407/srenergy2023.02.004.
  • 5. Lezhnyuk P., Gunko I., and Lysiy V., Macro-modeling of forecasting the balance of local power supply systems using fractal properties of load and generation schedules. Naukovi Pratsi VNTU, September 2023, 3. https://doi.org/10.31649/2307-5376-2023-3-1-8.
  • 6. Lezhniuk P., Komar V., Belik M., Rubanenko O. and Smaglo I., Analysis of technical conditions influencing the operation of PV power stations cooperating with controlled power grids. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, 1–6, https://doi.org/10.1109/MEES58014.2022.10005686.
  • 7. Global Electricity Review 2023. Accessed online: https://cutt.us/VfVOM (November 2024).
  • 8. World Energy Outlook 2023. Accessed online: http://surl.li/unveiz (November 2024).
  • 9. Energy outlook 2024. Accessed online: https://www.eiu.com/n/campaigns/energy-in-2024/ (November 2024).
  • 10. Halko S., Suprun O. and Miroshnyk O., Influence of Temperature on Energy Performance Indicators of Hybrid Solar Panels Using Cylindrical Cogeneration Photovoltaic Modules, 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, 132–136, https://doi.org/10.1109/KhPIWeek53812.2021.9569975.
  • 11. Walichnowska P., Kruszelnicka W., Piasecka I., Flizikowski J., Tomporowski A., Mazurkiewicz A.,... & Polishchuk O. Analysis of the impact of the post-consumer film waste scenario and the source of electricity on the harmfulness of the mass packaging process. Polymers, 2024, 16(24), 3467, https://doi.org/10.3390/polym16243467.
  • 12. Korobka S., Kasner R., Walichnowska P., Shchur T., Stukalets I., Syrotyuk S., & Kruszelnicka W. Analysis of the design and technological parameters of the designed solar dryer with a heat pump. Advances in Science and Technology. Research Journal, 2024, 18(7), 18–32. https://doi.org/10.12913/22998624/192263.
  • 13. Markowska K., Zhuk D., Zhuk O., Kozlov M., Stepenko S., Voskoboenko V., Stecuła K., Miroshnyk O., Shchur T. Analysis and improvement of power quality in the onboard electrical power systems within a self-propelled floating crane. International Journal of Electrical Power & Energy Systems, 161, 2024, 110179. https://doi.org/10.1016/j.ijepes.2024.110179.
  • 14. Atlas of the energy potential of renewable energy sources of Ukraine / by general ed. S. Kudria – Kyiv: Institute of Renewable Energy of the National Academy of Sciences of Ukraine, 2020, 82. Accessed online: https://cutt.us/eRNQ0 (July 2024).
  • 15. Szafraniec A., et al. Magnetic field parameters mathematical modelling of windelectric heater, Przeglad Elektrotechniczny 97(8), 2021, 36–41. https://doi.org/10.15199/48.2021.08.07.
  • 16. Ukraine approves National Energy and Climate Plan on the day of the start of EU accession negotiations. Accessed online: http://surl.li/afiiuf (November 2024).
  • 17. Qawaqzeh M., Al_Issa H., et al. The assess reduction of the expected energy not-supplied to consumers in medium voltage distribution systems after installing a sectionalizer in optimal place. Sustain. Energy, Grids and Networks 2023, 34, 101035. https://doi.org/10.1016/j.segan.2023.101035.
  • 18. On Amendments to Certain Laws of Ukraine Regarding the Development of Energy Storage Facilities. Document 2046-IX, valid. Acceptance from 02/15/2022. Accessed online: https://zakon.rada.gov.ua/laws/show/2046-20#Text (September 2024).
  • 19. Al_Issa, H.A., Qawaqzeh, M., et al. Correct cross-section of cable screen in a medium voltage collector network with isolated neutral of a wind power plant, Energies 14, 2021, 3026. https://doi.org/10.3390/en14113026.
  • 20. Law of Ukraine. On making changes to some laws of Ukraine regarding restoration and “green” transformation of the energy system of Ukraine. Accessed online: https://zakon.rada.gov.ua/laws/show/3220-20#Text (November 2024).
  • 21. Rubanenko O., Yanovych V., et al. Hydroelectric Power Generation for Compensation Instability of Non-guaranteed Power Plants. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS), Istanbul, Turkey, 2020, 52–56. https://doi.org/10.1109/IEPS51250.2020.9263151.
  • 22. REopt: Renewable Energy Integration & Optimization. Accessed online: https://reopt.nrel.gov/tool (November 2024).
  • 23. Halko S., Suprun O., Miroshnyk O. Influence of Temperature on Energy Performance Indicators of Hybrid Solar Panels Using Cylindrical Cogeneration Photovoltaic Modules, 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, 132–136. [https://doi.org/10.1109/KhPIWeek53812.2021.9569975].
  • 24. Law of Ukraine “On the Electric Energy Market”. Accessed online: http://surl.li/wxekij (November 2024).
  • 25. Karaiev O., Bondarenko L., Halko S., Miroshnyk O., Vershkov O., Karaieva T., Shchur T., Findura P., Prístavka M. Mathematical modelling of the fruitstone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 2021, 24(3), 119–123. https://doi.org/10.2478/ata-2021-0020.
  • 26. Gilman P., Dobos A., DiOrio N., Freeman J., Janzou S., and Ryberg. SAM Photovoltaic Model. Technical Reference Update. National Renewable Energy Laboratory. Accessed online: https://www.nrel.gov/docs/fy18osti/67399.pdf.
  • 27. Al_Issa H.A., Drechny M., Trrad I., Qawaqzeh M., Kuchanskyy V., Rubanenko O., Kudria S., Vasko P., Miroshnyk O., Shchur T. Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation. Energies 2022, 15(6), 2024. https://doi.org/10.3390/en15062024.
  • 28. Photovoltaic geographical information system. Accessed online: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html.
  • 29. Komada P., Trunova I., Miroshnyk O., Savchenko O., Shchur T. The incentive scheme for maintaining or improving power supply quality. Przeglad Elektrotechniczny, 2019, 95(5), 79–82. https://doi.org/10.15199/48.2019.05.20.
  • 30. Gönül Ö., Can Duman A., Barutçu B., Güler Ö. Techno-economic analysis of PV systems with manually adjustable tilt mechanisms. Engineering Science and Technology an International Journal. 35, 2022, 101116. https://doi.org/10.1016/j.jestch.2022.101116.
  • 31. Khasawneh A., Qawaqzeh M., Kuchanskyy V., Rubanenko O., Miroshnyk O., Shchur T., Drechny M. Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies. 2021, 14(20), 6791. https://doi.org/10.3390/en14206791.
  • 32. System Advisor Model Version 2022.11.29 (SAM 2022.11.21). National Renewable Energy Laboratory. Golden, CO. Accessed online: https://sam.nrel.gov (26.07.2024).
  • 33. Qawaqzeh MZ., Miroshnyk O., Shchur T., Kasner R., Idzikowski A., Kruszelnicka W., Tomporowski A., Bałdowska-Witos P., Flizikowski J., Zawada M. et al. Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies. 2021, 14(16), 4780. https://doi.org/10.3390/en14164780.
  • 34. Miroshnyk O., Tymchuk S. Uniform distribution of loads in the electric system 0.38/0.22 kV using genetic algorithms. Technical Electrodynamics 2013; 4: 67-73. http://www.scopus.com/inward/record.url?eid=2-s2.0-84885913005&partnerID=MN8TOARS.
  • 35. On Tuesday, July 16, the schedules of power outages will be applied during the day. Economic truth. Accessed online: https://www.epravda.com.ua/news/2024/07/15/716668/.
  • 36. Trunova I., Miroshnyk O., Savchenko O., and Moroz O., The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2019, 6, 163–168. https://doi.org/10.29202/nvngu/2019-6/24.
  • 37. Walichnowska P., Mroziński A., Idzikowski A. and Fröhlich S. R. Energy efficiency analysis of 1 MW PV farm mounted on fixed and tracking systems. Construction of Optimized Energy Potential Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 2022, 11(1), 75–83. https://doi.org/10.17512/bozpe.2022.11.09.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-546b90b9-7527-4dc9-aecf-83e155b878ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.